2、LTCC基板加工技术图2为LTCC基板制造工艺流程图,主要包括混料、流延、打孔、填孔、丝网印刷、层压、等静压、排胶烧结等,下面简要介绍各工艺的主要工序。
混料和流延:将有机物(主要由聚合物粘合剂和溶解于溶液的增塑剂组成)和无机物(由陶瓷和玻璃组成)按一定比例混合,采用球磨法研磨均质,然后浇注在一个移动的载带上(通常为聚酯薄膜),通过一个干燥区,除去所有溶剂,通过控制刀片间隙,流延成所需厚度。此工艺的一般厚度公差为±6%。冲孔:采用机械冲孔、钻孔或激光钻孔技术形成通孔。通孔是在生瓷片上冲出的小孔(通常直径为0.1-0.2mm),用于不同层间互连电路。在这个阶段还要冲模孔,以帮助叠片时对准;对准孔用于印刷导体和介质时自动对位。
用数控冲床冲孔是对生瓷带冲孔的较好方法,尤其是定型产品,冲孔更有优势。用冲床模具一次可冲出上千个孔,最小直径可达50μm。冲孔速度快,精度高,适合大批量生产。在生陶瓷带上制作微通孔时,需要一个与微通孔尺寸相同的冲头和一个模具。模具的开口一般比冲头模直径大12.5μm。
3.3LTCC基材排胶和烧结烧结的技术要点是控制烧结收缩率和基材的整体变化,控制两种材料的烧结收缩性能,避免产生微观和宏观缺陷,以及实现导体材料的抗氧化作用和在除烧结过程中去除粘合剂。普通LTCC基板的烧结收缩率主要是通过控制粉体的粒径、流延粘结剂的配比、热压叠片的压力、烧结曲线等手段来实现的。但是一般LTCC共烧体系沿X-Y方向的收缩仍然在12-16%。借助无压烧结或压力辅助烧结等技术,可以获得X-Y方向零收缩的材料。实现零收缩的工艺有:自约束烧结,基材在自由共烧过程中表现出自身抑制平面方向收缩的特性,这种方法不需要增加新设备,但材料体系独特,不能满足制造不同性能产品的要求。压力辅助烧结,通过在Z轴方向加压烧结来抑制X-Y平面上的收缩;无压力辅助烧结,在层压材料之间加入夹层(如在LTCC烧结温度下不烧结的氧化铝),以限制X和Y轴方向的移动,烧成后研磨掉上下面夹持用的氧化铝层;复合板共同压烧法,将生坯体粘附在金属板(如高机械强度的钼或钨等)进行烧结,利用金属片的束缚作用降低生坯体在X-Y方向的收缩。陶瓷薄板和生坯片叠层共同烧结法,陶瓷薄板作为基板的一部分,烧成后不必去除,也不存在抑制残留的隐忧。3.4LTCC电路板大面积接地钎焊
3.4.5钎焊率检测大面积钎焊后,理论上焊料利用毛细现象的原理,会尽可能地填充LTCC与箱体底部之间的空隙。但是由于保护气氛的存在,熔化的焊料会随机形成多个包围圈,将气体包裹在里面。钎焊界面内部有空腔或凝固过程中焊料合金松动,则X射线很容易通过,从而在成像图像中产生白色或灰白色的亮点,未设置“凸点”焊接工艺的X射线扫描图,箭头表示明显的焊接缺陷,钎着率在75%左右,设置“凸点”焊接工艺的X射线扫描图,箭头所指为轻微焊接缺陷,钎焊率为98%以上。由于“凸点”的存在,加热过程中人为造成LTCC基板两端的温度存在差异。随着“凸点”的缓缓坍塌,有利于盒体底部焊料与LTCC基板之间夹杂气体排除。X射线检测图片证明在气体保护下,在基体的焊接面上设计“凸点”可以提高钎焊率。
3.4.6LTCC电路板大面积接地钎焊结论(1)设置(Ni+M)复合金属膜层,大大提高了LTCC基板大面积金属化层对Sn63Pb37焊料的耐焊性,保证了LTCC基板与盒体的可靠钎焊;(2)采用气体保护,在LTCC基板的焊接面上设计“凸点”在提高LTCC电路基板与盒体之间的钎焊率非常有效。3.5LTCC电路检测对排脂、烧结、焊接后的LTCC元件必须进行多方面的检测,以确保其性能的可靠性。这些检测包括外观、尺寸、强度、电气性能等方面。