最新高考数学知识点中职对口高考数学知识点(优质20篇)

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:ab⊥cd,ac⊥bd

bc⊥ad.令得,已知则.

iii.空间四边形oabc且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取ac中点,则平面90°易知efgh为平行四边形

efgh为长方形.若对角线等,则为正方形.

基本事件的定义:

一次试验连同其中可能出现的每一个结果称为一个基本事件。

等可能基本事件:

若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。

古典概型:

如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件的发生都是等可能的;

那么,我们称这个随机试验的概率模型为古典概型.

古典概型的概率:

如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件a包含了其中m个等可能基本事件,那么事件a发生的概率为。

古典概型解题步骤:

(1)阅读题目,搜集信息;

(2)判断是否是等可能事件,并用字母表示事件;

(3)求出基本事件总数n和事件a所包含的结果数m;

(4)用公式求出概率并下结论。

求古典概型的概率的关键:

求古典概型的概率的关键是如何确定基本事件总数及事件a包含的基本事件的个数。

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且*.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a1

图象特征

函数性质

向x、y轴正负方向无限延伸

函数的定义域为r

图象关于原点和y轴不对称

非奇非偶函数

函数图象都在x轴上方

函数的值域为r+

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升

图象逐渐下降

增函数

减函数

在第一象限内的图象纵坐标都大于1

在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

(4)当时,若,则;

(一)对数

1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(底数,真数,对数式)

说明:1注意底数的限制,且;

2;

3注意对数的书写格式.

两个重要对数:

1常用对数:以10为底的对数;

2自然对数:以无理数为底的对数的对数.

对数式与指数式的互化

对数式指数式

对数底数幂底数

对数指数

真数幂

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+).

注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:,都不是对数函数,而只能称其为对数型函数.

2对数函数对底数的限制:,且.

2、对数函数的性质:

函数图象都在y轴右侧

函数的定义域为(0,+)

向y轴正负方向无限延伸

函数的值域为r

函数图象都过定点(1,0)

第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

【例1】已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},则m,n,p满足关系

a)m=npb)mn=pc)mnpd)npm

分析一:从判断元素的共性与区别入手。

解答一:对于集合m:{x|x=,m∈z};对于集合n:{x|x=,n∈z}

对于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以mn=p,故选b。

分析二:简单列举集合中的元素。

解答二:m={…,,…},n={…,,,,…},p={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

=∈n,∈n,∴mn,又=m,∴mn,

=p,∴np又∈n,∴pn,故p=n,所以选b。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合,,则(b)

a.m=nb.mnc.nmd.

解:

当时,2k+1是奇数,k+2是整数,选b

【例2】定义集合a*b={x|x∈a且xb},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为

a)1b)2c)3d)4

分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,…,an}有子集2n个来求解。

解答:∵a*b={x|x∈a且xb},∴a*b={1,7},有两个元素,故a*b的子集共有22个。选d。

变式1:已知非空集合m{1,2,3,4,5},且若a∈m,则6a∈m,那么集合m的个数为

a)5个b)6个c)7个d)8个

变式2:已知{a,b}a{a,b,c,d,e},求集合a.

解:由已知,集合中必须含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有个.

【例3】已知集合a={x|x2+px+q=0},b={x|x24x+r=0},且a∩b={1},a∪b={2,1,3},求实数p,q,r的值。

解答:∵a∩b={1}∴1∈b∴124×1+r=0,r=3.

∴b={x|x24x+r=0}={1,3},∵a∪b={2,1,3},2b,∴2∈a

∵a∩b={1}∴1∈a∴方程x2+px+q=0的两根为-2和1,

∴∴

变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求实数b,c,m的值.

解:∵a∩b={2}∴1∈b∴22+m2+6=0,m=-5

∴b={x|x2-5x+6=0}={2,3}∵a∪b=b∴

又∵a∩b={2}∴a={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合a={x|(x-1)(x+1)(x+2)>0},集合b满足:a∪b={x|x>-2},且a∩b={x|1

分析:先化简集合a,然后由a∪b和a∩b分别确定数轴上哪些元素属于b,哪些元素不属于b。

解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1]b,而(-∞,-2)∩b=ф。

综合以上各式有b={x|-1≤x≤5}

变式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有满足条件的a的集合。

解答:m={-1,3},∵m∩n=n,∴nm

①当时,ax-1=0无解,∴a=0②

综①②得:所求集合为{-1,0,}

【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为q,若p∩q≠,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。

解答:(1)若,在内有有解

令当时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(aa和aa,二者必居其一)、互异性(若aa,ba,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:n,z,q,r,n*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈a都有x∈b,则ab(或ab);

2)真子集:ab且存在x0∈b但x0a;记为ab(或,且)

3)交集:a∩b={x|x∈a且x∈b}

4)并集:a∪b={x|x∈a或x∈b}

5)补集:cua={x|xa但x∈u}

注意:①a,若a≠,则a;

②若,,则;

③若且,则a=b(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、的区别;(2)与的区别;(3)与的区别。

4.有关子集的几个等价关系

①a∩b=aab;②a∪b=bab;③abcuacub;

④a∩cub=空集cuab;⑤cua∪b=iab。

5.交、并集运算的性质

①a∩a=a,a∩=,a∩b=b∩a;②a∪a=a,a∪=a,a∪b=b∪a;

③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;

6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

【轨迹方程】就是与几何轨迹对应的代数描述。

⒈建立适当的坐标系,设出动点m的坐标;

⒉写出点m的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点p(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

三角函数。注意归一公式、诱导公式的正确性

数列题。1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单

立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

概率问题。1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的'联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱柱:

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。两个侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高

①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足。——《义务教育课程标准实验教科书数学四年级(上册)》

两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。——《义务教育课程实验教科书上海版数学四年级下册》(20xx年审定新版)

两条直线成直角,那么这两条直线互相垂直。

另一方面,给自己准备几个笔记本。对于理科生来说,尤其又是数学这种学科,在笔记本上整理总结题型是很有用的。一轮复习做到的一些错题可能是很有代表性的,自己要学会分章节把错题或者自己觉得经典的题目记录下来,这些可能就是高考的某一些思路。不过,这些经典的题目并不一定是那些怪题偏题,高考范围内的数学还是比较中规中矩的,除了压轴题会有一些特殊的思路或者灵感之外,大多数题目都是常规题型。

最后,在给学弟学妹带来一点感性一点的内容吧。高三是一场持久战,当你走过来了,才发现高三真的好快。同时,你会感激高三这一段奋斗的时光,十二年寒窗苦读这是第一次在学习上心无旁骛、花如此重大的精力冲刺一个目标,最后无论如何,不要让自己高考之后后悔。

(1)定义式:

任意两项

的关系为

(5)等比中项:

或者

无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。

(7)由等比数列组成的新的等比数列的公比:

{an}是公比为q的等比数列

1.若a=a1+a2+……+an

b=an+1+……+a2n

c=a2n+1+……a3n

则,a、b、c构成新的等比数列,公比q=q^n

2.若a=a1+a4+a7+……+a3n-2

b=a2+a5+a8+……+a3n-1

c=a3+a6+a9+……+a3n

则,a、b、c构成新的等比数列,公比q=q

性质

(1)若m、n、p、q∈n*,且m+n=p+q,则am*an=ap*aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“g是a、b的等比中项”则“g^2=ab(g≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则

{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…

{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。

(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

(7)等比数列前n项之和sn=a1(1-q^n)/(1-q)=a1(q^n-1)/(q-1)=(a1q^n)/(q-1)-a1/(q-1)

在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a^n表示a的n次方。

(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

求通项方法

(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an

构造等比数列a(n+1)+x=2(an+x)

a(n+1)=2an+x,∵a(n+1)=2an+3∴x=3

∴(a(n+1)+3)/(an+3)=2

∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3

(2)定义法:已知sn=a·2^n+b,,求an的通项公式

∵sn=a·2^n+b∴sn-1=a·2^n-1+b

∴an=sn-sn-1=a·2^n-1

实际应用

等比数列在生活中也是常常运用的。

如:银行有一种支付利息的方式——复利。

即把前一期的利息和本金加在一起算作本金,

在计算下一期的利息,也就是人们通常说的“利滚利”。

按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。

由于空集是任何非空集合的真子集,因此b=时也满足ba.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.

命题的否定与命题的否命题是两个不同的概念,命题p的否定是否定命题所作的判断,而否命题是对若p,则q形式的命题而言,既要否定条件也要否定结论.

对于两个条件a,b,如果ab成立,则a是b的充分条件,b是a的必要条件;如果ba成立,则a是b的必要条件,b是a的充分条件;如果ab,则a,b互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.

命题pq真p真或q真,命题pq假p假且q假(概括为一真即真);命题pq真p真且q真,命题pq假p假或q假(概括为一假即假);綈p真p假,綈p假p真(概括为一真一假).求参数取值范围的题目,也可以把或且非与集合的并交补对应起来进行理解,通过集合的运算求解.

在研究函数问题时要时时刻刻想到函数的图像,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有变号零点和不变号零点,对于不变号零点函数的零点定理是无能为力的,在解决函数的零点问题时要注意这个问题.

函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是在某点处的切线,还是过某点的切线

f(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f(x)在x0两侧异号.另外,已知极值点求参数时要进行检验.

对于函数y=asin(x+)的单调性,当0时,由于内层函数u=x+是单调递增的,所以该函数的单调性和y=sinx的单调性相同,故可完全按照函数y=sinx的单调区间解决;但当0时,内层函数u=x+是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.

函数y=asin(x+)(其中a0,0,xr)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当0时)或向右(当0时)平行移动||个单位长度;(2)再把所得各点横坐标缩短(当1时)或伸长(当01时)到原来的1倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当a1时)或缩短(当0

零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.

解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当ab0时,a与b的夹角不一定为钝角,要注意的情况.

在数列问题中,数列的通项an与其前n项和sn之间存在下列关系:an=s1,n=1,sn-sn-1,n2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其分段的特点.

等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论若数列{an}的前n项和sn=an2+bn+c(a,b,cr),则数列{an}为等差数列的充要条件是c=0在等差数列中,sm,s2m-sm,s3m-s2m(mn*)是等差数列.

数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和sn的关系是高考的命题重点,解题时要注意把n=1和n2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.

错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.

在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误.

利用基本不等式a+b2ab以及变式aba+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件.对形如y=ax+bx(a,b0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到.

解形如ax2+bx+c0的不等式时,首先要考虑对x2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a0且0时,不等式可化为a(x-x1)(x-x2)0,其中x1,x2(x1

解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意x[a,b]都有f(x)g(x)成立,即f(x)-g(x)0的恒成立问题,但对存在x[a,b],使f(x)g(x)成立,则为存在性问题,即f(x)ming(x)max,应特别注意两函数中的最大值与最小值的关系

三视图是根据正投影原理进行绘制,严格按照长对正,高平齐,宽相等的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.

面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.

平面几何中有些概念和性质,推广到空间中不一定成立.例如过直线外一点只能作一条直线与已知直线垂直垂直于同一条直线的两条直线平行等性质在空间中就不成立.

折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.

关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.

解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.

利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a|f1f2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.

过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性.

分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解分类用加、分步用乘是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于至少、至多型问题除了可以用分类方法处理外,还可以用间接法处理.

在二项式(a+b)n的展开式中,其通项tr+1=crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,,n项的二项式系数分别是c0n,c1n,c2n,,cn-1n,而不是c1n,c2n,c3n,,cnn.而项的系数是二项式系数与其他数字因数的积.

控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束.

条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值.

对于复数a+bi(a,br),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,br)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉-而出错.

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈r,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈r时,a+bi=0

a=0,b=0.

复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然;

(3)曲线c1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线c2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线c1:f(x,y)=0关于点(a,b)的对称曲线c2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈r时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈r时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>;0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈r时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈d(d为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>;0,a≠1,b>;0,n∈r+);(2)logan=(a>;0,a≠1,b>;0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;(4)alogan=n(a>;0,a≠1,n>;0);

8.判断对应是否为映射时,抓住两点:(1)a中元素必须都有象且唯一;(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为a,值域为b,则有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a)。

11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

对知识点的要求略有降低。

解析:对数学知识的要求分为三个层次,即了解、理解;掌握、灵活;综合运用。其中对第三层次的要求占比重相当小,仅出现以下几处:“掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用”、“能根据条件熟练地求出直线方程”、“熟记导数的基本公式”(但实际高考命题中,属第三层次的要求远不止这些)。

重点强调对数学基础知识、基本思想及方法的考查。

解析:在复习与冲刺时,不要忽略“三基”训练,但也不要盲目加大试题的难度。

强调对数学基础知识的考查,还“要求既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。”

解析:不难发现,函数、导数、不等式、三角函数、向量、概率与统计、数列、直线与平面、直线与圆锥曲线等是支撑数学学科知识体系的重点内容。在复习中要以三角与向量,直线平面简单几何体,概率统计,数列与极限,直线与圆及圆锥曲线,函数导数与不等式等六大部分为知识模块,在此开展专题复习,注意模块内与模块间的交汇综合。

强调“对新信息、情景、设问,选择有效的方法和手段分析问题,并能灵活地应用所学数学知识、思想、方法独立地解决问题”。

解析:近几年数学辽宁试卷中,多次出现像新定义、新背景等方面的创新试题,今年高考是辽宁省课改前的最后一年,为实现现有高考向课改高考平稳过渡,估计今年在创新问题上要加大考查力度。

①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。

②算法的五个重要特征:

ⅰ有穷性:一个算法必须保证执行有限步后结束;

ⅱ确切性:算法的每一步必须有确切的定义;

ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;

ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。

ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。

(1)程序框图的基本符号:

(2)画流程图的基本规则:

①使用标准的框图符号

②从上倒下、从左到右

③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点

④判断可以是两分支结构,也可以是多分支结构

⑤语言简练

⑥循环框可以被替代

(1)顺序结构:

顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

(2)条件结构:分支结构的一般形式

复数的概念:

形如a+bi(a,b∈r)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母c表示。

复数的表示:

复数通常用字母z表示,即z=a+bi(a,b∈r),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:

(1)复平面、实轴、虚轴:

点z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈r)可用点z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

(2)复数的几何意义:复数集c和复平面内所有的点所成的集合是一一对应关系,即

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:

复数z=a+bi(a、b∈r)在复平面上对应的点z(a,b)到原点的距离叫复数的模,记为|z|,即|z|=

虚数单位i:

(1)它的平方等于-1,即i2=-1;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数模的性质:

复数与实数、虚数、纯虚数及0的关系:

对于复数a+bi(a、b∈r),当且仅当b=0时,复数a+bi(a、b∈r)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

简单随机抽样指从总体n个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式,以下是数学网整理的简单随机抽样知识点,请考生学习。

1:简单随机抽样

(1)总体和样本

①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量.

(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随

机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:

①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:

①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;

③对样本中的每一个个体进行测量或调查

简单随机抽样知识点的全部内容就是这些,更多优秀的内容希望考生可以学习。

1、基本概念:

(1)必然事件:在条件s下,一定会发生的事件,叫相对于条件s的必然事件;

(2)不可能事件:在条件s下,一定不会发生的事件,叫相对于条件s的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件s的确定事件;

(4)随机事件:在条件s下可能发生也可能不发生的事件,叫相对于条件s的随机事件;

(5)频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数;称事件a出现的比例

fn(a)=为事件a出现的概率:对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

集合与简单逻辑

第一、遗忘空集是任何非空集合的真子集,因此对于集合b,就有b=a、φ≠b、b≠φ三种情况出现。在实际解题中,如果考生思维不够缜密,就有可能忽视第三种情况,导致结果出错。尤其是在解含有参数的集合问题时,要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊集合,考生因思维定式遗忘集合导致结果出错或不全面是常见的错误,一定要倍加当心。

第二、忽视集合元素的三性集合元素具有确定性、无序性、互异性的特点,在三性中,数互异性对答题的影响,尤其是带有字母参数的集合,实际上就隐含着对考生字母参数掌握程度的要求。在考场答题时,考生可先确定字母参数的范围,再一一具体解决。

第三、四种命题结构不明若原命题为“若a则b”,则逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。这里将会出现两组等价的命题:“原命题和它的逆否命题等价”,“否命题与逆命题等价”。考生在遇到“由某一个命题写出其他形式命题”的题型时,要首先明确四种命题的结构以及它们之间的等价关系。

在否定一个命题时,要记住“全称命题的否定是特称命题,特称命题的否定是全称命题”的规律。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,不是“a,b都是奇数”。

第四、充分必要条件颠倒两个条件a与b,若a=>b成立,则a是b的充分条件,b是a的必要条件;若b=>a成立,则a是b的必要条件,b是a的充分条件;若a<=>b,则ab互为充分必要条件。考生在解这类题时最容易出错的点就是颠倒了充分性与必要性,一定要根据充要条件的概念作出准确的判断。

第五、逻辑联结词理解不准确

在判断含逻辑联结词的命题时,考生很容易因理解不准确而出错。小编在这里给出一些常用的判断方法,希望同学们牢牢记住并加以运用。

p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

函数与导数

第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。

在用定义进行判断时,要注意自变量在定义域区间内的任意性。

第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。

抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<0。那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0。这个c也可以是方程f(c)=0的根,称之为函数的零点定理,分为“变号零点”和“不变号零点”,而对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时,考生需格外注意这类问题。

第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。

解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。

数列

第一、基本公式用错等差数列的首项为a1、公差为d,则其通项公式an=a1+(n—1)d,前n项和公式sn=na1+n(n—1)d/2=(a1+an)d/2;

等比数列的首项为a1、公比为q,则其通项公式an=a1pn—1,当公比q≠1时,前n项和公式sn=a1(1—pn)/(1—q)=(a1—anq)/(1—q),当公比q=1时,前n项和公式sn=na1。

在数列的基础题中,等差、等比数列公式是解题的根本,一旦用错了公式,解题也失去了方向。

第二、an,sn关系不清致误在数列题中,数列的通项an与其前n项和sn之间存在着关系。这个关系对任意数列都是成立的,但要注意的是关系式分段。在n=1和n≥2时,关系式具有完全不同的表现形式,这也是考生答题过程中经常出错的点,在使用关系式时,要牢牢记住其“分段”的特点。

当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式,就可以通过数列求和的方法求出sn;知道了sn,也可以求出an。在答题时,一定要体会这种转换的相互性。

第三、等差、等比数列性质理解错误等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般来说,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m—sm,s3m—s2m(m∈n)是等差数列。

第四、数列中最值错误数列的通项公式、前n项和公式都是关于正整数的函数,考生要善于从函数的观点认识和理解数列问题。但是很多同学在答题时容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值能够取到最值求解时出错。

在正整数n的二次函数中,其取最值的点要根据正整数距离二次函数的对称轴远近而定。

第五、错位相减求和时项数处理不当错位相减求和法适用于“数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和”的题型。设和式为sn,在和式两端同时乘以等比数列的公比得到另一个和式,两个和式错一位相减,得到的和式要分成三部分:原来数列的第一项;一个等比数列的前(n—1)项的和以及原来数列的第n项乘以公比后在作差时出现的。

考生在用错位相减法求数列的和时,一定要注意处理好这三个部分,否则很容易就会出错。

错因分析:由于空集是任何非空集合的真子集,因此,对于集合b高三经典纠错笔记:数学a,就有b=a,φ≠b高三经典纠错笔记:数学a,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

错因分析:如果原命题是“若a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

错因分析:对于两个条件a,b,如果a=b成立,则a是b的充分条件,b是a的必要条件;如果b=a成立,则a是b的必要条件,b是a的充分条件;如果ab,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真p真或q真,命题p∨q假p假且q假(概括为一真即真);命题p∧q真p真且q真,p∧q假p假或q假(概括为一假即假);┐p真p假,┐p假p真(概括为一真一假)。

易错点:遗忘空集致误

错因分析:由于空集是任何非空集合的真子集,因此,对于集合b,就有b=a,φ≠b,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

易错点:忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

易错点:四种命题的结构不明致误

错因分析:如果原命题是“若a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

易错点:充分必要条件颠倒致误。

错因分析:对于两个条件a,b,如果a=>b成立,则a是b的充分条件,b是a的必要条件;如果b=>a成立,则a是b的必要条件,b是a的充分条件;如果a<=>b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

p∨q假<=>p假且q假(概括为一真即真);

p∧q假<=>p假或q假(概括为一假即假);易错点:求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;

(2)偶次被开放式非负;

(3)真数大于0;

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

易错点:带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

易错点:求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

新一轮中考复习备考周期正式开始,.小编为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!

①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

②在不等式“a>b”或“a

③不等号的开口所对的数较大,不等号的尖头所对的数较小;

④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

圆--⊙半径—r弧--⌒直径—d

扇形弧长/圆锥母线—l周长—c面积—s三、有关圆的基本性质与定理(27个)

1.点p与圆o的位置关系(设p是一点,则po是点到圆心的距离):

p在⊙o外,po>r;p在⊙o上,po=r;p在⊙o内,po

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线ab与圆o的位置关系(设op⊥ab于p,则po是ab到圆心的距

离):

ab与⊙o相离,po>r;ab与⊙o相切,po=r;ab与⊙o相交,po

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为r和r,且r≥r,圆心距为p):

外离p>r+r;外切p=r+r;相交r-r

1.圆的周长c=2πr=πd

2.圆的面积s=s=πr

3.扇形弧长l=nπr/180

4.扇形面积s=nπr/360=rl/2

5.圆锥侧面积s=πrl

1.先看笔记后做作业。

有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢原因是学生对教师所说的理解没有达到教师要求的水平。

2.做题之后加强反思。

学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:有钱难买回头看。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。

有人认为,要想学好数学,只要多做题,功到自然成。数学要不要刷题一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多刷题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,进行章节总结是非常重要的。

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

1、集合与函数的概念(这部分知识抽象,较难理解)

2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

1、立体几何

(1)、证明:垂直(多考查面面垂直)、平行

(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程

1、算法初步:高考必考内容,5分(选择或填空)

2、统计:

3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:

1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:

1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右

2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考数学必考知识点归纳文科选修:

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考

2、圆锥曲线:

3、导数、导数的应用(高考必考)

选修1--2:

1、统计:

2、推理证明:一般不考,若考会是填空题

3、复数:(新课标比老课本难的多,高考必考内容)。

高考数学必考知识点归纳理科选修:

选修2--1:

1、逻辑用语

2、圆锥曲线

3、空间向量:(利用空间向量可以把立体几何做题简便化)

选修2--2:

1、导数与微积分

2、推理证明:一般不考3、复数

选修2--3:

1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分

2、随机变量及其分布:不单独命题

3、统计:

第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。

1.知识层面

2.能力层面

从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。

3.创新层面

数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。

4.代换层面

1.“方程”思想

2.“数与形相结合”的思想

数字和形状在世界各地随处可见。任何东西,除去它的定性方面,都是留给数学研究的,只有形状和尺寸的属性。代数和几何是初中数学的两个分支。然而,代数的研究依赖于“形式”,而几何学则依赖于“数”,而“数与形的结合”则是一种趋势。我们学得越多,“数字”和“形状”就越不可分割,在高中时,“数字”和“形状”是密不可分的。有一门关于用代数方法研究几何问题的课程,叫做“分析几何”。第三年,平面笛卡尔坐标系建立后,函数的研究就离不开图像。通过图像的帮助,很容易找到问题的关键点,解决问题。在今后的数学学习中,应重视“数与形相结合”的思维训练。只要任何问题都与“形状”有关,就应该根据主题的含义起草一个草图来分析它。这样做不仅是直观的,而且是全面的。诚信强,容易找到切入点,对解决问题有很大的益处。品尝甜味的人会逐渐养成“数形结合”的好习惯。

1.按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2.强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3.基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。

4.重视错误

订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

THE END
1.四种命题和充要条件的具体概念否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序。https://edu.iask.sina.com.cn/jy/2RCejKOytez.html
2.命题中的“否”和“非”的符号都是┐,这两个┐有什么区别?答案解析 查看更多优质解析 解答一 举报 不理解具体意思……否命题的符号为什么会是“┐”?具体来说这个符号是指这个命题的否定,比如┐P就是否定了P,读成“非P”.如果P是真命题,┐P就是假命题反之,P是假命题,┐P就是真命题. 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) https://www.zybang.com/question/74edac908b6ffdfb676cb32a53950fc4.html
3.命题逻辑(精选八篇)定义2.1:设IS=(U,A),有粒(av)及个体集合X,把“个体集合X是否可以用粒(av)来描述”这种形式的陈述句称为命题p,记为:X|=av,其值可真可假,是一个命题变元。在本文中可以用小字母p等表示某命题,也可以用X|=av形式来表示某命题。如果集合X可以用粒(av)来描述,则称该命题p真值为T;否则p真值为F。这等https://www.360wenmi.com/f/cnkeyy0s0b4c.html
4.高中数学优秀教案范例(10篇)否命题:若┐p则q┐。 【提问】原命题真,否命题一定真吗?举例说明? 学生活动: 讲论后回答: 原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。 原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。 http://www.jiaoyubaba.com/jiaoan/29277.html
5.命题(数)1、四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。 2、四种命题的真假关系:(1)两个命题互为逆否命题,它们有相同的真假性。(2)两个命题为互逆命题或互否命题,它们的真假性没有关系 编辑本http://www.360doc.com/content/11/1013/12/7392191_155702431.shtml
6.命题逻辑范文9篇(全文)说明: (1) 为消除P与Q, 单从 (P∨Q) 这一项无法消除, 必须联合第二项 (Q→S) 来考虑, 观察 (P∨Q) 与 (Q→S) 的构造, 想办法消除Q, 为此先用E11将 (P∨Q) 变形为┐P→Q, 再利用传递性I13消除Q, 变为┐P→S; (2) 由 (1) 的结论可知, 问题转换为证明 (┐P→S) ∧ (P→R) https://www.99xueshu.com/w/ikeyfhykopif.html
7.知识点突破——形式逻辑——联言&选言&假言——等价(1)充分条件的正命题:P → Q = ┐ Q → ┐ P = ┐ P ∨ Q P→Q=┐ Q→┐ P=┐P∨QP→Q=┐Q→┐P=┐P∨Q【A→B前假或后真,推出:A→B为真 。(后命题因为前命题为假,所以无法证明为“假”,即可逻辑上判定为“真”。)】 (2)充分条件的负命题:┐ ( P → Q ) = P ∧ ┐ Q ┐https://blog.csdn.net/stqer/article/details/132635542
8.四种命题真假的关系.ppt否命题与命题的否定的区别: 2.四种命题的真假关系。 在判断四种命题的真假时,只需判断两种命题的真假。因为逆命题与否命题真假等价,逆否命题与原命题真假等价。 * 1.什么是互逆命题? 原命题:若 p 则 q 逆命题: 若 q 则 p 也就是: 知识回顾: 如果第一个命题的条件(或题设)是第二个命题的结论,且第一https://max.book118.com/html/2018/1025/7156031031001154.shtm
9.逆否等价命题:P→Q等价于┐Q→┐P公式使用示例:例题如果逆否等价命题:P→Q等价于 ┐Q→ ┐P公式使用示例:【例题】如果某人是,那么案发时他在现场。因此,我们可以推知( )。 A. 张三案发时在现场,所以张三是; B. 李四不是,所以李四案发时不在现场 C. 王五案发时不在现场,所以王五不是 D. 赵六不在案发现场,所以赵六是https://www.shuashuati.com/ti/10072e817801416199ab8ac56dc42efc.html?fm=bdc6e76e4db9f080269072c35d5856c76a
10.题型1:判断命题的真值例1.写出由下述各命题构成的“p或q.“p且q例1.写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。 (1)p:9是144的约数,q:9是225的约数。 (2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1; (3)p:实数的平方是正数,q:实数的平方是0. http://www.1010jiajiao.com/timu_page_403072
11.B为“p←q”,试回答:(I)A与B可否同假,为什么?(2)A的负命题与5.对于命题p,q,若p∧q是假命题,p∨q是真命题,则 A.p,q 都是真命题 B.p,q 都是假命题 C.p,q 一个是真命题一个是假命题 D.无法判断 点击查看答案 第6题 4.如果┐p是真命题,p∨q也是真命题,那么下列说法正确的是() A.p、q都是真命题 B.p是真命题,q是假命题 C.p、q都是假命题 D.p是https://www.shangxueba.cn/wangke/E7DKB3XK.html
12.若C1=┐P∨Q,C2=P∨┐Q,则C1和C2的归结式R(C1,C2)=┐P∨P,或更多“若C1=┐P∨Q,C2=P∨┐Q,则C1和C2的归结式R(C1,C2)=┐P∨P,或___。”相关的问题 第1题 若C1=P(x)∨Q(x),C2=┐P(a)∨R(y),则C1和C2的归结式R(C1,C2)=()。 A.P(x)∨Q(x) B.P(a)∨Q(x) C.Q(x)∨R(y) D.Q(a)∨R(y) 点击查看答案 第2https://www.ycpai.cn/souti/73A82A1D.html