逻辑推理关系范文

导语:如何才能写好一篇逻辑推理关系,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

关键词:因果关系原因和条件内外因关系逻辑方法

破坏分子发现炸药仓库的守护卫兵在后半夜两次交接班时警惕性较差,遂利用这一疏漏,接近仓库点燃引爆物引发仓库爆炸,使国家财产遭受重大损失。

破坏分子“点燃”引爆物的行为无疑是仓库“爆炸”的原因。有人认为,保卫工作的“疏漏”也是“爆炸”事件发生的重要原因。还有人根据内外因原理认为,“炸药能够爆炸”(具有爆炸的性能)是内因,破坏分子“点燃”引爆物是外因。内因是根本的、决定性的原因。如果仓库内存放的只是一堆石子而没有炸药,就不会出现爆炸的结果。这一说法看似可笑,但与所说的“温度不能使石头变成小鸡”的例子是颇为类似的。

人们普遍认识到,现实中的因果关系是复杂的,存在“一因一果、一因多果、多因一果、多因多果”等情况。人们还从不同的角度把原因分为“直接—间接、主要—次要、重要—一般、偶然—必然”等等。但由于这些划分标准没有给予严格界定,这就引起许多不必要的争议。本文试图通过对概念进行严格定义,建立起“基本因果关系模型”,并以此为基础对复杂因果关系作出解释。

一、基本因果关系模型

哲学上把现象和现象之间那种“引起和被引起”的关系,叫做因果关系,其中引起某种现象产生的现象叫做原因,被某种现象引起的现象叫做结果。但在现实生活中,人们对“引起”和“被引起”却有大不相同的看法,结果出现了许多复杂的因果关系表述形式。但是表述越是复杂,越容易出现模糊和混乱,给科学地认识因果关系造成困难。所以对因果关系,学界至今还没有建构起比较完整的理论框架。

笔者以为,要想在因果关系研究上有所突破,应当借用数理逻辑的思想,从基本假设和定义出发,建构起“基本因果关系模型”(理论),以此为基础对复杂因果关系给予解释。

作为建构模型基础的基本假设和定义,都必须从现实世界中归纳出来。模型本身,也应当反映日常生活中最基本的因果关系。经济学研究的主体(基本单位)是个人,研究的内容是人的活动(体现了与外界的关系)。笔者从经济学得到启发,把通常所说的“事物”分解为动态的“事”和静态“物”两类。“物”是哲学研究的主体,“事”则是“物”的动态变化过程,它体现了主体“物”之间的关系。所以,“事”是由“物”参与产生的,而静态的“物”则可以独立存在。

但是为了利用人们熟知的哲学术语,我们做如下定义:

静态的“物”叫做“事物”,是哲学研究的主体,用A、B、C等表示;“事物”的变化叫做“现象”,是哲学研究的内容,用A、B等表示;“引起”用“”表示;A现象“引起”B现象,即现象A是结果B的原因,用“AB”表示。

日常生活中最基本的因果关系可以用开关的“开、关”与灯泡的“亮、灭”来表示。我们用导线把电池、开关、灯泡三个元件串联起来,构成一个简单电路,静态的开关、灯泡、电池、导线就是“事物”,开关状态的变化(开和关互变)与灯泡状态的变化(灭和亮互变)就是“现象”。“开关由关到开”与“灯泡由灭到亮”两个现象之间就具有“因果关系”。

“开关开”与“灯泡亮”(或“开关关与灯泡灭”)就存在“引起”和“被引起”的关系,可以用符号“AB”。我们把它作为“基本因果关系”的模型。下面就以“基本因果关系”为基础,讨论现实世界中复杂的因果关系。

二、区分原因和条件

我们把与结果发生有关的所有先前情况统称为“先前因素”,探索因果关系就是要确定哪些(个)先前因素是原因,哪些先前因素是条件。

我们之所以强调“对于特定的结果来说……”,是由于对于不同的结果来说,现象之间的关系就根本不同。例如对于灯泡“由亮到灭”来说,任何一个串联开关“由开到关”都可以引起这一结果,所以对于灯泡“由亮到灭”来说,每一个串联开关“由开到关”的现象,正好属于“并联现象”。同理还可以得出,对于灯泡“由亮到灭”来说,每一个并联开关“由开到关”的现象,正好属于“串联现象”。

三、逻辑推理与因果关系的区别

逻辑推理与因果关系的区别主要有以下几点:

3、逻辑推理中(主要指演义推理),条件必然蕴涵结论;但在因果关系中,原因并不必然蕴涵结论,而只有在“条件”都已经具备的情况下,原因的出现才引起了结果的发生。例如在电路中,n个串联开关中,只有在前n-1个开关都发生了“由关到开”的变化之后,即在特定条件都已经“成就”之后,第n个开关“由关到开”才能够成为灯泡由灭变亮的“原因”。如果我们预先把n个开关进行编号,或者设想它们的颜色各不相同但功能完全相同,最后一个发生“由关到开”变化的那个开关是红色的,那么只要前面n-1个开关中只要有一个没有发生“由关到开”的变化,那么红色开关“由关到开”的变化就并不能“引起”灯泡由灭变亮的结果。所以现实生活中发生的每一个因果关系都是具体的,都是特定的原因引起了特定的结果。也许只有在实验室条件下(在实验室中可以严格限定条件),原因和结果的关系才是确定不变的:相同的原因必然引起相同的结果,不同的原因引起不同的结果,就象人们在白开水中加入砂糖则必然使白开水变甜,而加入食盐则会使白开水变咸一样起清楚明确。通常人们认为,“同果必然有同因”,“异果必然有异因”,这一原理也只有在实验室条件下才是有效的。

4、因果关系是“现实”关系,只有在原因现象和结果现象已经发生之后,我们才说,原因A和结果B之间存在“因果关系”。而“逻辑推理”是一种“理论”推导,它不需要任何现实性做支撑,条件就必然蕴涵结论。演绎推理的逻辑结构是:

若A包含于B,并且B包含于C,则A包含于C。就象初等数学中A<B并且B<C,那么A<C一样。

但是因果关系却不具有这种传递性。即A是B的原因,并且B是C的原因,却不能得出A是C的原因。即结果原因的原因,不是结果的原因,就象西欧封建社会中的等级关系那样:我的附庸的附庸,不是我的附庸。

当然,也有人把原因的原因看作结果的原因,就象我的祖先的祖先,也是我的祖先一样。但如果这样理解因果关系,那么秦始皇统一中国也许就是两千多年来一切社会事件的原因,一切事物的最终原因就都是自然界本身。这样理解因果关系,就丧失了研究的意义。如果严格套用因果关系定义,可以看到这些理解并不符合因果关系定义。

不过,从另一个角度看,正是由于理论必须符合现实,它才能够解释和预测现实。逻辑推理尽管是理论上的,也许正是由于它是理论上的,所以可以用于推测因果关系的可能性,并由现实予以证实和证伪。实际上人们也正是这样利用逻辑推理来探索因果关系的。结果在日常生活中,人们往往经常把因果关系中的“结果”与逻辑推理中的“结论”相混淆,例如有人把公安机关侦破刑事案件的结论称为“结果”。问“杀人案有结果了吗?”答曰“有,是张三谋财杀人!”这里的所谓“结果”,实际上是指找到了“杀人结果”的“原因”,它应当属于逻辑推理的“结论”而不是现实中因果关系的“结果”。再如我看到李四到医院就诊,由于就诊人都是因为有病,所以我就可以根据李四就诊推断他患了病,既由“就诊”这一条件得出了“有病”这一结论。但在平时,我们会说“因为我看见李四就诊,所以李四有病”。这样的表述,“就诊”好象成了“有病”的原因,正好颠倒了其中的因果关系。所以我们在分析“因为……所以……”这样的表述时,一定要搞清它是逻辑推理,还是因果关系。

四、复杂因果关系分析

现实生活中人们往往会说,有时出现“多因一果”,有时出现“一因多果”,还有时出现“多因多果”。我们应如何看待这些情况呢?

1、“多因一果”关系分析:

另外,笼统地看待结果却具体地探索原因,也会出现所谓的多因一果。例如,笼统地认识社会,会得出“社会秩序混乱”这一结果,应当说这是一个非常宏观的“现象”。如果在同一层次上分析原因,应当有一个宏观的术语表示“原因”。但实际上,到现在人们甚至还没有试图用一个宏观术语来表述这一宏观原因,于是只好谈论(许多)具体原因,由于具体原因很多,实际上无法统计,人们注意到这一情况,所以认为“多因一果”情况大量存在。但如果在同一层次上认识问题,就可以认为“社会秩序混乱是人的活动造成的”。只要在同一层次认识问题,就仍然是一果一因。

还有一种复杂的因果关系“链条”(一连串的因果关系),人们往往把中间环节中出现的“结果”都作为最后结果的“原因”,于是就出现所谓的“多因一果情况”。例如,人们往往把一个人所有的“直系祖先”都看作产生这个人的“原因”。但是如前所述,把一个人的“出生”作为结果,父母的“结合”应当是原因,而祖父母的结合则是“父亲”出生的原因,外祖父母的结合则是“母亲”出生的原因……

2、“一因

多果”关系分析

“一因多果”的情况与“多因一果”的情况正好相反。首先,现实世界中存在连续因果关系,人们往往把最初因果关系之后,结果作为原因又引起的结果都看做最初原因的结果。例如一个(对)祖先可能有许多直系后裔,如果把每个后裔都作为“结果”,就出现“一因多果”的情况。

其次,宏观地认识原因而微观地认识结果,则是“一因多果”的更为普遍的情况。例如把世界上“人口太多”看作原因,它当然会引起许多具体结果。因为人口有几十亿,每个人都要活动,都会引起相应的结果,于是也出现一因多果的情况。一因多果可以用宏观模型“总电闸断开”与“每个用电器停电”之间的关系表示。这显然是在不同层次上认识问题造成的。如果我们限定在同一层次上分析问题,就可以说,“总电闸断开”是原因,“全局停电”是结果,仍然是一因一果的关系。

3、“多因多果”关系分析

“多因多果”的现象,实际上是一因一果关系的复合。只要从结果中分解出单一结果,则不难在原因中分解出对应的单一原因。例如,厨师在做汤时使用了很多作料,汤的味道鲜美可口。鲜美可口的味道是由许多单一的“味道”组合而成的,我们可以把它分解为单一味道分别加以研究。我们假定该汤的味道有苦、辣、酸、甜、咸五种,再分别探讨,这五种味道是如何产生的。也许我们发现做汤前只加入了两种调味品,即食盐和五香粉。食盐是单一调味品,它产生了“咸味”;但五香粉是一种混合物,它由几种调料混合而成,只要再继续分解,就可以找出是哪种物质产生了苦味,哪种物质产生了辣味等等。于是在“物质”和“味道”之间就建立了一一对应关系。

五、不同学科对因果关系的不同认识和定义

我们前面是从哲学上对因果关系进行定义的分析的,但是不同学科对因果关系往往有不同的定义和认识。最典型的就是“法律上的因果关系”和“现实中的因果关系”就大不相同。

在现实生活中,为了对付老鼠,我们可以从市场上购买一个鼠夹子,放置在老鼠经常出没的地方,最后确实逮住了老鼠。对于这一结果来说,我们往往说,“安放”鼠夹子的行为是原因,“逮住”老鼠是结果。但这样说并不严格符合“因果关系定义”。根据我们的分析,“安放”鼠夹子时,结果并没有发生,所以不应该是引起结果的原因。最后的因素是老鼠“接触”到了夹子鼠,它才是引起结果现象发生的原因。

在法律上把有可能导致结果发生的情况都称为“原因”。例如在公路边挖沟修管道,没有作出明显标记,致使晚上骑自行车经过此处的行人摔倒。如果行人是正常行使无过错,就认为挖沟人应承担全部责任,尽管按照因果关系定义,行人的行为是原因,而挖沟只是引起结果发生的有关“条件”。

六、回到问题

历史学家总想探讨社会发展的终极原因,这一想法是值得赞赏的。但是既然要探讨终极原因,就应当限定范围,确定探讨到什么程度为止。美国经济学家诺思就探讨到“人口的自然增长”。应当说,在社会科学的界限内,这一原因确实可以称为“终极原因”,因为再往前探讨“人口自然增长”的原因,就是人的生物属性,这就超出了社会科学的范围。笔者认为,古代中国社会的长期停滞根源于特定的地理条件,也是归结到在社会科学范围无法解释的界限为止……

还是回到我们的炸药仓库爆炸的问题上来吧!在炸药仓库爆炸事件中,根据我们已经阐述的原理,破坏分子“点燃”导火线的行为应当是原因;“炸药能够爆炸”是“不言而喻”的前提条件。保卫工作的“疏漏”,是一个持续存在的因素,所以可以分两个阶段进行分析。首先,它被破坏分子发现,使他产生了引发爆炸的特定目的;其后,在破坏分子具体实施爆炸时,又被其直接利用接近仓库。从激发了破坏分子的犯罪目的看,保卫工作疏漏是条件的原因,也可以称为“间接原因”;从被破坏分子利用接近仓库的角度看,保卫工作疏漏又是仓库爆炸的直接“条件”。

“内因外因”则是以某一事物作为界限,把界限内的各种因素(条件)都称为内因,把界限外的事物都称为外因。笔者以为,把内因看成主要的、第一位的原因,也许在教育人们发挥主观努力上具有作用,但却难以对其进行严格的科学分析。用所谓“内外因关系原理”解释现实生活,则往往闹出大笑话。例如用石头去砸鸡蛋,结果当然是“鸡蛋破碎”。在“用石头砸”和“鸡蛋破碎”这两个现象中无疑存在因果关系,甚至可以说“砸”是“碎”的最直接、最主要、最重要、最根本……的原因,而没有人把“鸡蛋本身不够坚硬”作为“鸡蛋破碎”原因。

关键词:问题逻辑;思想政治理论课;科学发展观

由中央宣传部组织编写的《科学发展观读本》(以下简称《读本》)一书,从科学发展观提出的理论背景、实践基础和历史地位,到科学发展观的具体内容、精神实质,再到深入学习和贯彻落实科学发展观的根本要求,内容非常周全[1]。科学发展观如何融入高校思想政治理论课(以下简称“思政课”)?教学创新的路径之一是以问题逻辑的方式对科学发展观进行阐释和重构,重在释疑解惑,形成基于问题逻辑的科学发展观教学体系平台。

一、构建科学发展观的问题逻辑体系

问题逻辑是专门研究问题的一门应用思维科学,其中心任务是揭示问题之间及提出问题和解答问题这个范围内所产生的各种问题的逻辑性质和关系[2]。以问题的方式推进科学发展观进“思政课”,我们开展的一项主要工作是:根据课程的教学目标和要求,教师对问题(《读本》的基本内容)进行梳理、归纳并与教材内容对接,通过问题层次细化,建立科学发展观的问题逻辑体系。层次细化所指向的是问题的层级关系,即预设一级问题,然后把问题细化为二级、三级层次;或者把大的难题化解为小的问题进行解答。具体做法如下:

1.建构六个一级问题的逻辑体系:“科学发展观为什么是我们必须长期坚持的指导思想?”“以人为本为什么是科学发展观的核心?”“全面协调科学发展为什么是科学发展观的基本要求?”“推动经济又好又快发展为什么是科学发展观的实质?”“贯彻落实科学发展观为什么要坚持改革开放?”“促进社会全面进步为什么是科学发展观的内在要求?”其中一级问题“科学发展观为什么是我们必须长期坚持的指导思想?”是统领其余五个问题,也是其他问题必须回答的总问题。“以人为本为什么是科学发展观的核心?”的问题是科学发展观的核心问题,只有搞清楚这个问题,才能更好地回答后面四个问题。后面四个问题是一个横向逻辑,共同为推动社会发展,坚持以人为本的核心服务。

2.建构基于问题逻辑的二级问题体系,即在每个一级问题的基础上建构二级问题体系。如一级问题“科学发展观为什么是我们必须长期坚持的指导思想?”下有三个二级问题:“为什么要提出科学发展观?”“科学发展观为什么是发展观探索的最新成就?”“科学发展观为什么意义重大”等。

3.建构三级问题体系。如,二级问题“为什么要提出科学发展观?”下面有四个三级问题:“传统发展观为什么面临挑战?”“发展为什么不能等同于经济增长?”“单纯经济增长的发展为什么会造成严重后果?”“为什么要科学发展?”通过以上三级问题体系的建构,从而形成一个层次分明的问题体系,构建科学发展观的问题逻辑体系。

二、建立问题和问题之间的逻辑关联

在一个“问题场”中,问题之间总是存在某种联系,如何建立三级问题之间的相互关系,就成为建构科学发展观问题体系的基础。这里主要有以下几种逻辑关系:

1.并列逻辑。所谓并列的逻辑关系,就是说在一个大的问题内部所细化的诸多问题之间是属于一种并列的逻辑关系,并不存在一个问题比另外一个更重要、更根本的问题,它们以同等的力量共同支持“元问题”。在建构科学发展观的问题体系里,存在某些的三级问题的并列关系。如“为什么改革开放要不动摇、不懈怠、不折腾?”作为一个二级问题,通过并列的逻辑关系细化为:“为什么要提出‘不动摇、不懈怠、不折腾’?”“做到‘不折腾’为什么要不断提高改革决策的科学性,增强改革措施的协调性?”等并列逻辑关系的三级问题。“和谐社会建设为什么必须树立和落实科学发展观?”细化为“民族团结为什么在和谐社会建设中处于重要地位?”和“促进两岸和平统一为什么是和谐社会建设的重要内容?”两个并列的三级问题。

2.递进逻辑。建立递进的逻辑关系的问题是基于问题逻辑的根本。递进关系就是一个问题为下一问题做前提、基础或者铺垫,后一个问题是前一个问题的深化。通过层层深化而不断建构问题体系。如“为什么人是发展的本质?”的问题在细化为三个问题过程中就采用递进的逻辑。即“‘以人为本’的‘人’为什么是指广大人民群众?”“‘以人为本’为什么比‘以民为本’更具优越性?”“科学发展观的核心问题为什么是‘为了谁,依靠谁’”等。

4.因果逻辑。因果逻辑是问题之间产生一种因果联系,进言之,正是有了这个问题,才会导致产生另外一个问题,或者导致一系列的问题。因果逻辑逐渐成为科学发展观的问题体系建构的重要方面。

三、实现教学内容与学生问题的有效对接

基于问题逻辑的科学发展观进“思政课”教学体系建设,除了在科学发展观内容与教材相结合的基础上形成问题体系,还要通过在课堂内外采集和解答学生问题,把学生问题纳入问题体系,将学生问题与科学发展观教学内容对接起来,实现科学发展观内容与学生需要的对接。在推进学生问题与教学内容的对接,最重要的是要做好三类问题的对接,具体对接如下:

1.教材核心问题与热点问题的对接。黑格尔指出,“个人无论采取任何方式履行他的义务,他必须同时找到他自己的利益,和他的满足或打算。”[3]大学生具有两重性,一方面是社会家庭共同体的一员,具有这个时代的基本特征,对社会问题有着天然的接触和感触;另一方面是学校共同体成员,在这个共同体里,又追求着一种学院式知识,在知识的共同体“濡化”下成长。而前者更具有根本性。这就决定了学生必定会无意识地与社会现实所接触,又有意识地接受高校思想政治理论课教育,他们之间的张力很容易困惑许多学生。只有把教材核心问题与社会的热点问题对接起来,才能打通长期困惑学生心中的种种谜团和困惑。让学生在了解现实问题的过程中领悟教材的核心问题,在学习教材的核心问题过程中更加清楚地认识社会的热点问题。

3.学生问题和学生成长成才需要的对接。马克思指出,“人们奋斗所争取的一切,都同他们的利益有关”[4]。学生的成长的需要是学生学习的最主要动力之一,而成才的需要就成为最主要的利益所求。这就要求我们必须要把学生的问题与学生成长的需要紧密结合起来,通过树立学生的问题,建构学生的问题体系,从而有效地反映出学生的思想动态,也更加充分地了解和把握学生的成长需要。

四、构建科学发展观问题逻辑体系的意义

2.问题逻辑与创新思维训练。问题特别是具有逻辑关联的问题体系,本身蕴涵着学生创新能力培养的很好方式。问题和问题体系一方面必须建立在相应的知识基础之上;另一方面又指向未知。学生提出问题本身就促进了大学生积极思考,而提出越来越深刻问题的进程,是创新思维能力最好的培养方式之一。

参考文献:

[1]王增范,齐建英.《科学发展观读本》是一本好教材[EB/OL].henan.省略/ztzl/system/2008/10/21/010101917.shtml,2011-01-25.

[2]周晓林.逻辑学教程[M].苏州:苏州大学出版社,2009:175.

[3][德]黑格尔.法哲学原理[M].北京:商务印书馆,2009:262.

根据我们对多届学生的分析,我们发现学生在进入高一时,物理学习是比较困难的,究其原因是因为此时的物理学习与初中时相比,无论是在知识上,还是在思维方法上均有较大的区别,因此学生需要一个适应的过程.而此后学生一般会有三种发展可能:一是物理彻底差下去,原因是物理学习始终不得其道;二是不温不火,原因是复杂的物理知识与一般的学习能力之间形成了一种平衡;三是物理成绩好了起来,原因是物理思维能力契合了物理知识的学习.对于第三种可能而言,逻辑思维能力的作用功不可没.掘作即以“动能定理”为例,谈谈逻辑思维能力的培养.

1动能定理知识中的逻辑关系梳理

但同时我们应当注意到,这些关系又不是显性的,换句话说不是学生一眼所能看出来的,而推理动能定理所需要的逻辑推理能力也不是自然出现的,因此在动能定理出现的过程中还需要教师的指导与指引,而指引的重要方式就是问题的设计与适时提出.

2动能定理教学中的逻辑能力培养

在动能定理的形成过程中,我们有这样两个关系需要明确培养.

一是情境创设中的逻辑关系.无论具体的情境如何,其总离不开让学生思考动能与影响因素的关系,比如说有老师设计扔出篮球与铅球让学生去接,通过让学生比较接球的感受来判断影响动能大小的因素.在这一过程中,逻辑关系存在于接球感受(实质上是动能的大小)与影响因素之间,ΔEk与W之间是什么关系成为下一步探究的主题.

如果说刚才进行的是从定性角度进行的逻辑推理的话,那更为精确的从定量角度进行的逻辑推进可以顺势进行:

根据牛顿第二运动定律F合=ma,又因为对于匀加速直线运动,有v2t-v20=2as,变形后可得a=v2t-v202s,代入牛顿第二运动定律表达式,即可得F合=m(v2t-v202s),将右边分母上的s移至左边即可得F合s=m(v2t-v202),此时继续引导学生去研究等号左边的F合s,即可发现其即为“功”,那是什么力做的功呢?由下标可知为合外力做的功!

此时遇到的问题在于学生对等号右边认识,首先要将其变形成12mv2t-12mv20,这样有助于学生认识到这是相同形式但不同状态的两个物理量的差!那这是什么物理量呢?一般情况下学生并不能直接反应出来,即使说出动能概念的,也往往说不清理由.这个时候仍然需要教师引导学生进行推理:等号的左边是功,那右边就应当是功或者能(因为功是能量转化的量度),从形式上来看显然不是功,那只可能是能!又可以发现其中每一个因式都与质量和速度有关,因此此能应当是动能!也因此,合外力做功与动能变化的关系就浮出出来!

3教学反思

关键词:高中学生数列教学思维能力

数学是一门严谨而抽象,科学而不失美感的学科,它对于逻辑推理能力和概括能力等有较高的要求。高中正是学生思维能力培养的关键时期,因而教师在具体的教学中应当注重培养学生的思维能力。只有培养了学生的思维能力,学生才能将数学知识学以致用,真正达到教学的目的。

一、数学思维能力及类型

数学思维能力是数学能力的核心所在,直接决定着学生的解题能力和得分能力。高中数学教学中要注重对学生数学能力的培养,即教师指导学生培养自身的数学思维,用数学的视角看待问题和解决问题。

数学思维能力包括抽象概括能力、逻辑推理能力、选择判断能力、探索能力等多种能力,这些能力都是能在数学学习中直接获得的。本文以数列的教学为例,谈谈教师应当如何培养学生的抽象概括能力、逻辑推理能力等数学思维能力。

二、高中数列教学中学生思维能力的培养

1.抽象概括能力的培养

抽象概括能力在数学中运用甚广,它主要表现在从普通中找出规律,找出差异,建立事物之间的联系等方面。抽象概况能力的运用能帮助学生发现问题的关键和实质,将具体的数学问题概括成某一类数学模型。抽象概括能力是高中学生学习数学、应对高考的必备能力之一,那在高中数学的数列教学中,应当如何着手抽象概括能力的培养呢·笔者认为,可以通过以下方式来达到这种目的。

2.逻辑推理能力的培养

逻辑推理能力所依赖的是严密的思维和强有力的推理。数学的各种运算、定理的证明等都要依赖于推理才能实现。在完整的数学知识的体系中,更是离不开完美、严密的逻辑推理方法。可以说,没有逻辑推理能力就没有数学教学,因此,高中数学的教学要大力培养学生的逻辑推理能力,数列教学也不例外。

在高中数列教学中,教师要积极引导学生培养自身的逻辑推理能力和直觉推理能力。逻辑推理能力让学生的思维更加缜密,考虑事情也更加全面;直觉推理能力则能帮助学生让自身思维变得更加敏捷、灵活而富有创新性。学生的主动思考和积极动脑对于逻辑推理能力的培养意义重大,因此教师在数列单元的教学中要鼓励学生自己去想。同时,在数列教学中,教师应当注意推理过程的教学,如求等比数列的通项式,在已知某等比数列的第二、第四项的情况下,教师应当让学生了解如何一步步求出数列通项,可以先求公比,然后求第一项,再根据公式写出数列的通项。虽然题目简单,但学生能从题目的解答中掌握每一步都要有根据,同时,学生在熟练掌握了解方法之后,就能渐渐缩短解题步骤,但仍要有理有据。这样一来,学生就能在数列的学习中逐步加强自身的逻辑推理能力。

3.选择判断能力的培养

选择判断能力作为数学能力的一个重要方面,表现为对数学推理过程和结论正确与否的判断,也体现在学生对数学方法、数学定理、解题思路的选择等方面。具有较高选择和判断能力的学生,能够在解题时选择适合的方法,运用合理的思路,得出正确的方法。选择判断能力实质上是学生的一种自我反馈能力的体现,它能够帮助学生更快、更准确地作出判断,同时以最简单明了的方式做出正确的解答。既然选择判断能力对于学生来说如此重要,那么教师在高中数列的教学中应当怎样培养和提高学生的这种能力呢·笔者根据自身多年的教学经验,认为可以从以下几点着手。

注重培养学生获取有用信息的能力,这是培养学生选择判断能力的基础。每一道题里都有已知的信息,同时也会有一些有迷惑性或者是搅乱视线的文字,因此,学生要有甄别和提取有用信息的能力。在数列教学中,教师要注意学生信息获取能力的培养。比如,在一些数列的应用题中,尽可能地获取更多的信息就很重要。

请看下面的例子:甲、乙两人分别从相距70米的公园和车站出发,两人同时动身且相向行走。已知甲第一分钟走2m,以后每分钟比前一分钟多走1m,乙每分钟走5m,请问:①甲、乙开始行走后几分钟相遇·②如果甲、乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m,乙继续每分钟走5m,那么开始运动几分钟后第二次相遇·

在这个例子中,学生就应当先理解题目的意思,读懂题目已知条件和要求。关键信息有70米,相向行走,甲和乙的各自行走速度等,根据这些有用的信息,学生才能够继续做题,列出相应的等式,如假设n分钟后两人相遇,则有:

故第二次相遇是在开始运动后15分钟。

4.创新思维能力的培养

创新思维能力的培养是建立在抽象概括能力、逻辑推理能力和选择判断能力等基础上的一种创新思维能力。在这一过程中,教师应当不断地鼓励学生大胆假设、验证假设,以及修正假设。具体来说,它要求学生敢于发问、严密论证和积极探索。不仅要对正在探索的问题进行创造性的解释,还要能够举一反三,做到触类旁通。要想培养学生的创新思维能力,在数列教学中教师就应当将学生带入一个未知的领域,从而激发出学生强烈的求知欲,提高他们的学习热情。

数学教学与思维能力的培养有密切的关系,因此教师在高中数列教学中应当注重培养学生的思维能力。

关键词:创新思维逻辑推理实验设计科学素养

公元59年,伽利略建立了自由落体定律,它不仅是运动学中的第一个定量定律,更重要的是由此而产生了一种新的研究方法,即把数学推理与实验研究相结合的方法,为物理学的发展开辟了道路。伽利略在自由落体运动的研究中,在创新意识、实验设计、逻辑推理等方面表现出了超乎寻常的能力,通过这一课的教学,我们应从伽利略的科学精神中获得哪些启发,在哪些方面培养学生的科学素养呢?

一、培养学生独立思考、勇于创新的科学精神

在伽利略之前,人们把亚里士多德信奉为圣人,他的思想被奉为金科玉律。在当时,如果学生提出一个问题,老师只用一句话回答:“这是亚里士多德说的”,问者便不敢再怀疑了。而伽利略却与众不同,凡事不但喜欢想一想,并且要去试一试。59年,伽利略对亚里士多德的一个经典理论提出了怀疑。亚氏说,如果把两件东西从空中扔下,必定是重的东西先落地,轻的东西后落地。伽利略却认为是同时落地,在课堂上,我们要把他的这种敢于向传统挑战的精神呈现给学生,培养学生在认真观察、分析事物的基础上,敢于提出自己的见解,培养学生在课堂上敢于发言,大胆地提出独立见解的能力。在自由落体运动的课堂上,有个同学就提出:若让等重的钢球和铝球在空中同时下落,它们也会同时落地吗?这个问题提得非常好,至少说明了有一些同学已经具备了一定的创新意识,这是一个良好的开端,教师要进行积极的引导和鼓励,虽然学生的想法并不完善甚至可能是错误的,而事物的主要方面在于一种创新精神的体现。

二、培养学生逻辑推理能力

“重东西当然比轻东西落得快”,这在当时是公认的道理,可是,伽利略利用逻辑推理的方法,一语揭穿了它的错误:如果把轻重两球捆在一起,从空中抛下,它落下时是比重球快还是比重球慢呢?当然支持亚氏观点的人自然会得出相互矛盾的两个答案而陷入尴尬的境地。其实生活中的许多问题都可以用逻辑推理的方法找到答案。例如,白光通过三棱镜可以分解为红、橙、黄、绿、蓝、靛、紫七种颜色的光,这说明白光是由这七种单色光复合而成的,反之推理,通过一定的方式,这七种颜色的光应该能够复合成白光的。事实已经证明了这一点。

培养学生的逻辑思维能力有利于提高学生的解题能力。逻辑思维强调的是因果关系的一致性和必然性,要让学生知道,在解物理问题时,条件、结论以及解题过程都是遵循一定的逻辑关系的,违反了这个关系,就有可能导致错误的结果。这也是检查错题的基本指导思想。逻辑推理的方法应用到实验中可以达到现有的实验条件所达不到的目的,因为再先进的实验条件都无法达到理想状态,有时只有通过逻辑推理,才能达到理想状态的结论。教学中,要注意培养学生这方面的基础和逻辑推理能力。这些,对学生的成长和将来的发展有着深远的意义。

三、培养学生实验设计能力

关键词:初中数学教学合情推理能力培养方法

我曾有过一种困惑:认为新教材轻视了对概念的准确定义及定理的推理论证,没有展开分析、讨论,只要求学生去记概念、定理,讲求会用就行,这叫知其然,不知其所以然,显然不利于学生的长期发展。如:“三角形内角和定理”教材中没有证明过程,而是让学生用剪纸拼接实验来加以说明。又如:教材中轴对称图形、线、底边上的中线、高线重合(三线合一)等,教材中没有加以证明,就用折纸的方法使学生确定它们的存在。这是逻辑推理的一大忌讳,不利于学生逻辑推理能力的培养,失去了数学的严谨性。通过认真解读《数学课程标准》,我消除了误解。课标指出:“学生通过义务教育阶段的数学学习,经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力。”

数学家波利亚说:“数学可以看作是一门证明的科学,但这只是一个方面,完成了数学理论,用最终形式表示出来,像是仅仅由证明构成的纯粹证明性。严格的数学推理以演绎推理为基础,而数学结论的得出及其证明过程是靠合情推理才得以发现的。”由一个或几个已知判断推出另一未知判断的思维形式,叫做推理。合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。合情推理就是一种合乎情理的推理,主要包括观察、比较、不完全归纳、类比、猜想、估算、联想、自觉、顿悟、灵感等思维形式。合情推理所得的结果具有偶然性,但也不是完全凭空想象,它是根据一定的知识和方法做出的探索性的判断,因而在平时的课堂教学中如何教会学生合情推理,是一个值得探讨的课题。

当今,教育领域正在全面推进旨在培养学生创新能力的教学改革。但长期以来,中学数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。事实上,数学发展史中的每一个重要的发现,除演绎推理外,合情推理也起重要作用,合情推理与演绎推理是相辅相成的。在证明一个定理之前,先得猜想、发现一个命题的内容,在完全作出证明之前,先要不断检验、完善、修改所提出的猜想,还要推测证明的思路。首先要把观察到的结果加以综合,然后进行类比,再一次又一次地进行尝试,在这一系列的过程中,需要充分运用的不是论证推理,而是合情推理。合情推理的实质是“发现―猜想”,牛顿早就说过:“没有大胆的猜想就做不出伟大的发现。”著名的数学家波利亚早在1953年就大声疾呼:“让我们教猜测吧!”“先猜后证──这是大多数的发现之道。在解决问题时的合情推理的特征是不按逻辑程序去思考,但实际上是学生把自己的经验与逻辑推理的方法有机地整合起来的一种跳跃性的表现形式。因此在数学学习中,既要强调思维的严密性,结果的正确性,又要重视思维的直觉探索性和发现性,即应重视数学合情推理能力的培养。

一、在“数与代数”中培养合情推理能力

在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则。代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过;对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解;初中教材是用温度计经过形象类比和推理引入数学数轴知识的;求绝对值|-5|=?|+5|=?|-2|=?|+2|=?|-3/2|=?|+3/2|=?从上面的运算中,你发现相反数的绝对值有什么关系?并作出简捷的叙述。通过这个例子,教学可以培养学生的合情推理能力,再结合数轴,可以让学生初步接触数形结合的解题方法,并且让学生了解绝对值的几何意义。

在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。

二、在“空间与图形”中培养合情推理能力

三、在“统计与概率”中培养合情推理能力

统计中的推理是合情推理,是一种可能性的推理,与其他推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

四、在学生熟悉的生活环境中培养合情推理能力

教师在进行数学教学活动时,如果只以教材的内容为素材对学生的合情推理能力进行培养,毫无疑问,这样的教学活动也能促进学生的合情推理能力的发展。但是,除了学校的教育教学活动(以教材内容为素材)以外,还有很多活动也能有效地发展学生的合情推理能力。例如,人们日常生活中经常需要作出判断和推理,许多游戏很多中也隐含着推理的要求。所以,要进一步拓宽发展学生合情推理能力的渠道,使学生感受到生活、活动中有“数学”,有“合情推理”,养成善于观察、猜测、分析、归纳推理的好习惯。

总之,在数学教学中对学生进行合情推理能力的培养,对于老师,能提高课堂效率,增加课堂教学的趣味性,优化教学条件、提升教学水平和业务水平;对于学生,不但能使学生学到知识,学会解决问题,而且能使学生掌握在新问题出现时该如何应对的思想方法。

[1]中国教育学会中学数学教学专业委员会.面向21世纪的数学教育.浙江教育出版社,1997.5.

[2]教育部基础教育司.数学课程标准研制组编写.数学课程标准解读.北京师范大学出版社,2002.4.

[3]新课程研究基础教育.2007,(11).

一、准确理解概念的内涵与外延,区别命题的真假性

生物学概念是反映生物本质属性的思维形式。教师首先要准确理解生物学概念的内涵(反映事物“质的问题”)与外延(反映事物“量”的问题)。一般来说,概念的内涵越丰富,外延越小,反之外延越大。比如“血细胞”与“红细胞”,其内涵(不具体说明)差别较大,“红细胞”的内涵比“血细胞”丰富,但外延比血细胞要小。“血细胞”外延可以指各种动物的红细胞、白细胞和血小板。有的概念内涵非常丰富,往往具有特指性。比如制备纯净细胞膜材料,“哺乳动物成熟的红细胞”区别于“成熟哺乳动物的红细胞”。虽然概念前有两个修饰词,都是指哺乳动物和成熟,但排列顺序不同。

高中生物学中存在较多的“集合概念”与“非集合概念”。如“植物细胞”(包括植物体内根细胞、叶肉细胞、花瓣细胞等各种植物细胞)和“植物根尖分生区细胞”。准确区别概念之间的关系有:“种属关系”、“交叉关系”和“同一关系”。比如:核酸分别与DNA或RNA之间的“种属关系”;蛋白质与激素之间的“交叉关系”;蓝藻与蓝细菌的“同一关系”。这些也可以指导学生用“韦恩图”来表示。概念之间的联系,可以形成“概念图”。绘制概念图时,可以依据概念之间的关系,也可以用一个或几个“关键词”或用“真命题”来联系它们。比如:细胞与真核细胞、原核细胞,依据概念之间的关系绘制概念图。染色体与DNA之间的概念关系,用“染色体的主要成分之一是DNA”真命题来联系,绘制概念图,两个概念之间的关键词:“主要成分”和“之一”。

生物学命题是人们对事物情况(生物学知识)有所判断的一种思维形式。命题不同于概念,高中生物教学中,教师要注意各种命题的真假性判断。命题形式较多,需要学生具备一定的逻辑能力,来判断是“真命题”还是“假命题”。比如:①真核生物的遗传物质是DNA(真);②具有细胞结构的生物遗传物质是DNA(真);③所有生物遗传物质是DNA(假)。所以,教师在平时的生物教学中,要有意识地培养学生这方面的能力。

二、生物学科的逻辑推理过程

生物学科涉及的推理类型常见的有:归纳推理、演绎推理、类比推理等。教师在课堂教学中,注重对学生的逻辑能力培养,有利于科学思维的形成,进而提高学生的生物学素养。下面,以归纳推理与演绎推理为例说明推理的方法。

1.关于归纳推理过程

生物学科知识点繁多,专业术语复杂,学生无法准确理解,很难做到像物理学科那样的逻辑推理。教师在生物教学过程中,要教会学生进行逻辑推理,其中归纳推理分为“完全归纳推理”和“不完全归纳推理”。比如:①真核生物的遗传物质是DNA;②原核生物的遗传物质是DNA;③大多数病毒的遗传物质是DNA;④少数RNA病毒的遗传物质是RNA。上述几个真命题的归纳推理结论为:DNA是生物的主要遗传物质(真命题)。推理过程表述为:由①②推出具有细胞结构的生物遗传物质是DNA。由①②③推出绝大多数生物的遗传物质是DNA。由①②③④推出DNA是生物(生物界)的主要遗传物质。这种属于“完全归纳推理”。另外,还有“不完全归纳推理”。比如:①纯合子AA自交后代全是纯合子AA;②纯合子aa自交后代全是纯合子aa;③纯合子AAbb自交后代全是纯合子AAbb;④纯合子aabbCC自交后代全是纯合子aabbCC。由上述这些真命题可以归纳出:纯合子自交后代全是纯合子(真命题)。

2.关于演绎推理过程

高中生物学科教学指导意见把“假说演绎法”作为生物学科的基本逻辑能力,这就要求教师的教学过程也要具备逻辑性。比如教师在进行“遗传信息的传递――DNA复制”内容教学时,可以这样设计演绎推理过程。先从日常生活的复制(计算机的文件复制与资料的复印),引出“全保留复制”。如果DNA是这种复制机制的话,亲代DNA双链标记32P在以31P作为原料的条件下DNA复制一代,形成两个子代DNA,通过密度梯度离心得到结果为:一个为“重带”,另一个为“轻带”。而科学家实验结果是只出现“中带”。这说明了全保留复制是错误的。然后,教师再让学生设计复制机制,得到结果是“半保留复制”。这个教学过程本身是一个演绎推理过程。

三、教学中注意分析与综合问题

高考生物试题的综合性很强,部分选择题的选项,知识点跨度很大,这就要求学生具备很强的分析能力。那么,什么是分析?所谓的分析是指把整体分解成部分,把复杂的问题分解成简单的要素,或把历史的过程分解成片段来研究的思维方法。对生物学来讲,定性与定量分析显得非常重要。

【关键词】数理逻辑离散数学教学方法

离散数学作为计算机科学研究与学习的基本数学工具,其研究主要对象是离散量的结构及其相互关系。离散数学最难学习的是数理逻辑部分,这部分内容定义公式繁多,不易记忆和接受,学生学习比较困难,但它是培养学生逻辑推理能力的重要内容。因此,在离散数学教学中,讲授数理逻辑部分是教学的重点。

一、离散数学中数理逻辑的教学内容

命题演算和谓词演算是数理逻辑中两个最重要最基本的部分。命题是指有具体意义的能判断真假的陈述句。形象的说,如果将命题看作运算对象,如代数中的数字、字母或代数公式,而把逻辑联结词看作是运算符号,如代数中的“加、减、乘、除”,那么命题演算也就类似于代数运算。这种逻辑运算同代数运算一样,有自己的运算规律。

谓词演算也称一阶逻辑演算。它为了克服命题逻辑的局限性,将命题的内部结构分解成三部分:个体词、谓词和量词,然后研究这种命题之间的逻辑推理关系。

二、数理逻辑的教学方法讨论

(一)设置悬疑,激发学生兴趣

例1:一逻辑学家被困一部落,酋长有意放行,于是对逻辑学家说:“现有两扇门,一是自由,一是死亡,两门可任开启一扇。你可从两战士中选其一负责解答你任一问题(Y/N),两战士其一诚实,另一说谎。”逻辑学家沉思片刻,向其一战士发问,然后开门从容地离开。逻辑学家是怎样发问的呢?

听到这个问题,学生必定非常好奇,在此教师可说学完命题逻辑推理理论后,这个问题就可解决。于是学生会带着好奇心,学习效果定会比预期好。

(二)深入生活,加强概念理解

在命题逻辑中的五种联结词中,学生最难掌握的是蕴涵联结词。其中重点是蕴涵联结词的前件和后件的区分。根据课本的定义[1]:

设p,q,为二命题,复合命题“如果p,则q”称为p与q的蕴涵式,记做Pq,并称p是蕴涵式的前件,q是蕴涵式的后件,称作蕴涵联接词。并规定Pq为假当且仅当p为真q为假。

为了加深对此概念的理解,可以给出一些用蕴涵式表示的自然语言。如“只要p就q”,“因为p,所以q”,“p仅当q”,“只有q才p”,“除非p才q”,“除非p否则非q”等。在上述语句中,一个共性就是q是p的必要条件。

例2:“爱生活,爱拉芳。”

(三)注重类比,抓住重点内容

数理逻辑部分的内容复杂,公式繁多,在教学中如何抓住重点,让学生容易听懂呢?这是每个老师都必须面对的一个非常严峻的问题。我们可以考虑将命题推理系统和一阶逻辑推理系统对比,由于它们的字母表、合式公式和推理规则都很类似,把它们的相同和区别之处给学生讲清楚,就可以帮助学生加深理解。又如在命题逻辑的等值演算中,教材给出了16个组基本的等值式:

教学时,可以给出学生其中的一个证明,剩余的让学生自己去做。如证明(1),当A为F时,┑A为T,┑┑A为F;当A为T时,┑A为F,┑┑A为T,所以有A┑┑A。这样,学生就得到了等值式,而且对其他等值式也有了更加具体的认识,便于记忆。

为了改进离散数学中数理逻辑部分的教学方法,在分析数理逻辑的教学内容的基础上,从以下四个方面着手来提高教学效果:激发学生兴趣、加深概念理解、启发学生思维和抓住重点内容。经我们在实际教学中的运用结果来看,效果较好。

[关键词]初中数学教学合情推理能力培养

合情推理所得的结果具有偶然性,但也不是完全凭空想象,它是根据一定的知识和方法做出的探索性的判断,因而在平时的课堂教学中如何教会学生合情推理,是一个值得探讨的课题。当今,教育领域正在全面推进,旨在培养学生创新能力的教学改革。长期以来,中学数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。

在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。

统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。

概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。

一、在抽象中培育数学思维

抽象是数学的本质特征,准确理解初中数学中的概念、定律无疑对思维提出了较高的要求。初中数学尤其要把数学抽象形象化,这才是教育的精髓。

1.实景抽象

数学研究离不开现实生活这个大背景,以实景或实物为对象进行抽象认知是思维上的一次跳跃。例如,“有理数的乘方”一节中,文字和图片结合呈现出手工拉面的制作过程,拉面师傅将面和好揉成一条后,拉长对折,再拉长再对折,如此反复下去,问6次操作后有多少根面条?从模拟现实场景抽象出数学问题,通过实物引导逐步转换或数学思维,学生积极思考一定能把有理数乘方本质属性等知识内化为自己的初步认识,经历了由感性到理性的认知过程。

2.简约抽象

针对实景抽象而言,有关属性已部分脱离实景但关键属性已经初见端倪,也可认为思维到了符号抽象表达的边缘。例如,三个宽一样的小长方形可以组合得到一个新大长方形面积的算法,最终得到大长方形长b+c+d与宽a的积等于三个小长方形面积之和,即ab+ac+ad。实际上这就是“单项式乘多项式”一节要得到的算理法则,此时单项式乘多项式的有关属性已经呈现出来,这为后续用符号语言简洁表达奠定了逻辑基础。

3.符号抽象

符号抽象,就是用数学符号语言刻画出有关原理的表达方式。例如,“勾股定理”一节,学生首先通过观察特殊“邮票”这一实景对直角三角形形成一个直观认识,再通过测量等方式计算出邮票三角形三边长之间的数量关系,最后赋予直角三角形三边特殊关系以符号语言,并用a2+b2=c2描述出勾股定理。

4.范式抽象

即通过假设、推理等方式建立模型,能解释一类问题的抽象方式。例如,“二元一次方程”完成了从“一元”到“二元”的范式建立,该节内容的学习主要集中在类似于“鸡兔同笼”问题的解决上。范式抽象无疑对培育学生的思维品质提出了更高要求,有“触类旁通”之效。

二、在逻辑推理中发展思维

逻辑推理也称演绎推理,主要遵循“大前提―小前提―结论”这种“三段论”推理形式。如6名学生围坐一圈,另有1名学生坐圈中央。现拿出7顶(4白3黑)帽子,先让7名学生都戴上黑色眼罩,后o每名学生戴1顶帽子,再解开坐在圈上的6名学生的眼罩。这时,由于中央的学生的阻挡,每个人只能看到5个人的帽子。最后请7人猜一猜自己戴的帽子颜色。实际上6名在周围的同学“均”无法猜出(思索一阵无果),中央的学生抓住白比黑多1顶的逻辑关系,可推测自己戴的是白色。这道逻辑推理题在多种资料里反复出现,对于学生逻辑推理思维的养成有较好的示范作用。

三、在数学建模中拓展思维

数学建模,指在问题解决中,利用不同数学算理提出的实际解决方案。例如,现有甲、乙粮食经销商,每次同时从同一粮店购进同一价格的粮食,但每次的粮价随市场变化,甲的购粮方式是每次购买2000千克,乙的购粮方式是每次购2000元的粮食,甲、乙二经销商都购粮两次,问:谁的购粮方式更划算?学生通过不同模型的对比选出最优方案的过程无疑是思维碰撞不断加深理解的历程。

四、在运算中提升思维

运算必须要明确算理、程序。四则运算规定了先乘除后加减,初中加入乘方后运算优先级又进了一步。运算教学应与思维训练相结合,逐步提高运算能力。例如,在学习一元一次方程化简涉及分母时,教师往往要求学生先进行去分母运算,在这一过程中还会涉及公倍数等问题。

五、在直观想象中创新思维

直观想象指对图像、实物、模型等见物联想,进而在头脑中得到具体形象。例如,理解轴对称与中心对称区别与联系时,让学生制作三角形模型通过对称、旋转变换得到一些较特殊的四边形。最后我们发现沿边进行轴对称变换得到三个轴对称的四边形,如果以各边中点为旋转中心旋转180°,则产生平行四边形,这就加深了对两种对称的理解。

THE END
1.命题与语句的关系命题与语句的关系悬世尘埃 精选回答 同一个语句可以表达不同的命题。所谓命题,就是通过语句来反映事物情况的思维形式。任何命题都是通过语句来表达的。但是,命题与语句并不是对应的。不同的语句也可以表示同一命题。掌握同一命题可以用不同的语句来表达这一特点,可以使文章生动话泼,富于变化。运用不同语句来表达https://edu.iask.sina.com.cn/jy/2C5EonYYDRz.html
2.命题逻辑(一)三·复合命题 即命题+命题组成的可分解的命题 四、命题联结词 五、命题符号化(题型二) 合取:边…边…;虽然…但是… 蕴含:如果…就;…仅当…;除非…否则… 六、命题公式及其真值(题型三) 可以根据真值表判断 七、公式的分类和等价(题型四) 1·永真式(重言式):公式在所有可能的解释下都为真。 https://blog.csdn.net/m0_68738982/article/details/139125759
3.1.1.命题及其关系.doc下载得到文件列表 1.1.命题及其关系.doc 相关文档 文档介绍文档介绍:螅命题学案螃一、课前小练:薈阅读下列语句,你能判断它们的真假吗?膆(1)矩形的对角线相等;袅(2)3;膄(3)3吗?芀(4)8是24的约数;腿(5)两条直线相交,有且只有一个交点;羅(6)、新课内容::羈①命题:可以判断真假的陈述句叫做命题(https://m.taodocs.com/p-240150926.html
4.高中数学教案大全(精选13篇)1、充分条件、必要条件以及下节课中充要条件与集合的概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的充分条件与必要条件。 2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结http://www.jiaoyubaba.com/banianji/81967.html
5.专题10推理篇——判断与推理(讲义)1.判断的表达 (1)判断是通过语句表达的。判断是语句的思想内容,语句是判断的语言形式。 (2)判断与语句之间的关系是思维与语言之间关系的具体表现。与判断这种思维形式相对应的语言形式是语句,任何判断都必须用语句表达。 (3)判断与语句不完全对应,具体表现为以下三个方面:第一,有些语句表达判断,有些语句不表达判https://zujuan.xkw.com/thematiclist/16pt4354ct12965n370202.html
6.2011年4月普通逻辑自考试题2.SOP的矛盾命题是( ) A.SEP B.PAS C.SAP D.SIP 3.概念A和B的外延完全不同,并且二者的外延之和小于二者属概念的全部外延,则A、B概念之间具有( ) A.交叉关系 B.反对关系 C.真包含于关系 D.真包含关系 4.“有些公务员不是共产党员”这一判断是( ) https://www.hbzkw.com/exam/20120303102926.html
7.2022江西高考理科数学大纲刚刚公布1. 命题及其关系 (1)理解命题的概念. (2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的意义. 2. 简单的逻辑联结词 了解逻辑联结词“或”“且”“非”的含义. 3. 全称量词与存在量词 https://www.55xw.net/show-37545.html
8.《幼儿园综合素质》高频考点预测归纳(五)教师基本能力考点1全异关系:全异关系是两个概念在外延上没有任何部分相重合的关系。 2.直言命题 命题也叫判断,是对事物情况有所判定的一种思维形式。 (1)直言命题的类型 根据所含联项和量项的不同,可以把直言命题分为六种类型: ①全称肯定命题:所有s都是p,记为sap,缩写为a。 https://www.233.com/teacher/youer/fudao/zhsz/20140302/110754697.html
9.命题的否定和否命题命题的分类定理结构判断一件事情的语句,叫做命题。 命题的概念包括两层含义: (1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断。 二、命题的否定和否命题的区别 1.命题的否定和否命题的区别在于命题的否定只否定该命题的结论,而否命题则否定原命题的条件和结论。 http://sx.ychedu.com/SXJA/JLJJA/611887.html
10.2高三第一轮复习导学案东北师大附中,高三数学,文理,第一轮复习导学案命题及其关系,充分条件,必要条件,教案,一,知识梳理,阅读教材选修,第页第页,四种命题,命题是可以可以判断真假的语句,具有,若,则的形式,一般地用或分别表示命题的条件或结论,用或分别表示和的否定https://m.jinchutou.com/d-23277549.html
11.试判断如下语句是否是命题?如果是命题,请将其谓词符号化。(1)您更多“试判断如下语句是否是命题?如果是命题,请将其谓词符号化。 (1)您去电影院吗? (2)这句话是谎言。 (3)两个奇数之和是奇数。 (4)有缺点的战士毕竟是战士,完美的苍蝇毕竟是苍蝇。 (5)如果下雨,…”相关的问题 第1题判断下列语句是否是命题.(1)a+b+c(2)你是博士(3)y>0.(4)请进(5)2010年7https://www.xilvlaw.com/souti/yiwei/47C816F7.html
12.《普通逻辑》第三章简单判断笔记语句是判断的语言表达形式,判断是语句表达的思维内容。 语句与判断的关系:1.不是所有的语句都表达判断;2.同一个判断,可以使用不同的语句来表达;3.同一个语句可以表达不同的判断; 命题:表达判断的语句是命题。 命题形式:命题的逻辑形式。与命题具体内容相对的形式结构。 https://www.jianshu.com/p/a818dee8dea7
13.数学教案1.使学生对命题、真命题、假命题等概念有所理解. 2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式. 3.会判断一些命题的真假. 教学重点和难点 本节的重点和难点是:找出一个命题的题设和结论. 教学过程 设计 一、分析语句,理解命题 1.教师让学生随意https://www.diyifanwen.com/jiaoan/qinianjishuxuejiaoan/203501076220350184821831.htm
14.相比论证,推理可以离开语句陈述或命题。()2021年,国家实施援藏扶贫项目2311个,推动内地284个县区与的332个县区、乡镇建立结对帮扶关系,帮助23万余名群众脱贫,全方位助力改善民生、打赢脱贫攻坚战。这告诉我们( )①价值判断和价值选择具有主体差异性②人生价值要在个人与社会统一中实现③作出正确的价值判断需站 A. ①③ B. ①④ C. ②③ D.https://www.shuashuati.com/ti/aaeba75707b346e1ae141caf15e1e7e5.html
15.2021年国考行测判断推理中的模态命题公务员考试网模态命题是很多考生并不熟悉,很多行测考试中也不经常作为考察内容,但是掌握模态命题对于我们理解逻辑判断中的翻译推理,真假推理和其他关系有着很大的帮助作用。近年来,国考和省考题目中模态命题也出现在了逻辑判断的考题中,说到底,模态命题更多是广大考生做题的一个有效工具。所以,许多没有学习过模态命题的学生自然无从https://www.huatu.com/2020/0306/1879740.html