二元一次方程解法大全

直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如

(x-m)2=n(n≥0)的方程,其解为x=±根号下

n+m.

例1.解方程(1)(3x+1)2=7(2)

9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解:9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

2.配方法:用配方法解方程ax2+bx+c=0(a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2

方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=±

∴x=(这就是求根公式)

例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)

解:将常数项移到方程右边3x^2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:

x2-x+()2=+()2

配方:(x-)2=

直接开平方得:x-=±

∴原方程的解为x1=,x2=.

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2,b=-8,c=5

b^2-4ac=(-8)2-4×2×5=64-40=24>0

∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1)(x+3)(x-6)=-8(2)2x2+3x=0

(3)6x2+5x-50=0(选学)(4)x2-2(+)x+4=0(选学)

(1)解:(x+3)(x-6)=-8化简整理得

x2-3x-10=0(方程左边为二次三项式,右边为零)

(x-5)(x+2)=0(方程左边分解因式)

∴x-5=0或x+2=0(转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0(用提公因式法将方程左边分解

因式)

∴x=0或2x+3=0(转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0(十字相乘分解因式时要

特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=,x2=-是原方程的解。

(4)解:x2-2(+)x+4=0(∵4可分解为2·2,∴此题可用因式分解法)

(x-2)(x-2)=0

∴x1=2,x2=2是原方程的解。

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

二元一次方程练习题

一、判断

1、是方程组的解…………()

2、方程组的解是方程3x-2y=13的一个解()

3、由两个二元一次方程组成方程组一定是二元一次方程组()

4、方程组,可以转化为()

5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()

6、若x+y=0,且|x|=2,则y的值为2…………()

7、方程组有唯一的解,那么m的值为m≠-5…………()

8、方程组有无数多个解…………()

9、x+y=5且x,y的绝对值都小于5的整数解共有5组…………()

10、方程组的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组的解………()

11、若|a+5|=5,a+b=1则………()

12、在方程4x-3y=7里,如果用x的代数式表示y,则()

二、选择:

13、任何一个二元一次方程都有()

(A)一个解;(B)两个解;

(C)三个解;(D)无数多个解;

14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()

(A)5个(B)6个(C)7个(D)8个

15、如果的解都是正数,那么a的取值范围是()

(A)a<2;(B);(C);(D);

16、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是()

THE END
1.2元一次方程求解公式2元一次方程求解公式 设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0。求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2。 韦达定理说明了一元二次方程中根和系数之间的关系。https://edu.iask.sina.com.cn/bdjx/Cw0lizBoAX.html
2.解二元一次方程的公式法的公式是?解答一 举报 先写成ax2+bx+c=0这种一般形式x1=( -b+根号(b2-4ac))/2ax2=( -b-根号(b2-4ac))/2a 解析看不懂?免费查看同类题视频解析查看解答 相似问题 解二元一次方程 公式法的公式是什么? 用二元一次方程公式法帮我解2道题 二元一次方程求解公式是什么 特别推荐 热点考点 2022年高考真题试卷https://www.zybang.com/question/f3d684a6995ca8aff7f4a1c227612dea.html
3.用求根公式法或开方法求解下列一元一次方程:(1)x2(2)a=1,b=-6,c=-6,∴x=6±√6026±602=3±√1515;(3)a=1,b=-6,c=-5,∴x=6±√5626±562=3±√1414;(4)a=1,b=-2,c=-2,∴x=2±√1222±122=1±√3±3. 点评 本题考查利用求根公式求解一元一次方程,考查学生的计算能力,比较基础.http://www.1010jiajiao.com/gzsx/shiti_id_f27632676c51e286db53468b308bdb03
4.一元二次方程的解法详细解析的形式,那么这个方程就是一元二次方程。 下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表: 【举例解析】 https://www.xuexila.com/xuexifangfa/shuxue/980632.html
5.数学教案用公式法解一元二次方程优秀10篇.docx数学教案-用公式法解一元二次方程【优秀10篇】.docx,数学教案-用公式法解一元二次方程【优秀10篇】 数学《一元二次方程》教案设计 篇一 一、教材分析 1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容https://m.book118.com/html/2023/0808/8002102062005117.shtm
6.《公式法解一元二次方程》教案及反思(精选6篇)《公式法解一元二次方程》教案及反思1 第1教时 教学内容:12.1 用公式解一元二次方程(一) 教学目标: 知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项. 过程与方法目标:1.通过一元二次方程的引入,培养学生分析问题和解决问题https://wenku.puchedu.cn/25485.html
7.二元一次方程的解法怎样求二元一次方程组的解2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元http://sx.ychedu.com/SXJA/QLJJA/593501.html