2020中考数学总复习之函数相关知识点整理(一元二次函数及二元一次函数)

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程。

1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。

2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a)。

这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。

(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解;

(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解;

(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)

1、解一元二次方程的步骤:

(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

(4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组不等式:

①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;

例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;

例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;

例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;

例如:A>B,A*C

3、函数变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:

①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形A、图形的认识

1、点,线,面点,线,面:

①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。展开与折叠:

①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

及时获取本地权威教育资讯,随时随地的贴身学习顾问,英语学习的好帮手、课程规划的好助手!

THE END
1.2元一次方程求解公式2元一次方程求解公式 设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0。求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2。 韦达定理说明了一元二次方程中根和系数之间的关系。https://edu.iask.sina.com.cn/bdjx/Cw0lizBoAX.html
2.解二元一次方程的公式法的公式是?解答一 举报 先写成ax2+bx+c=0这种一般形式x1=( -b+根号(b2-4ac))/2ax2=( -b-根号(b2-4ac))/2a 解析看不懂?免费查看同类题视频解析查看解答 相似问题 解二元一次方程 公式法的公式是什么? 用二元一次方程公式法帮我解2道题 二元一次方程求解公式是什么 特别推荐 热点考点 2022年高考真题试卷https://www.zybang.com/question/f3d684a6995ca8aff7f4a1c227612dea.html
3.用求根公式法或开方法求解下列一元一次方程:(1)x2(2)a=1,b=-6,c=-6,∴x=6±√6026±602=3±√1515;(3)a=1,b=-6,c=-5,∴x=6±√5626±562=3±√1414;(4)a=1,b=-2,c=-2,∴x=2±√1222±122=1±√3±3. 点评 本题考查利用求根公式求解一元一次方程,考查学生的计算能力,比较基础.http://www.1010jiajiao.com/gzsx/shiti_id_f27632676c51e286db53468b308bdb03
4.一元二次方程的解法详细解析的形式,那么这个方程就是一元二次方程。 下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表: 【举例解析】 https://www.xuexila.com/xuexifangfa/shuxue/980632.html
5.数学教案用公式法解一元二次方程优秀10篇.docx数学教案-用公式法解一元二次方程【优秀10篇】.docx,数学教案-用公式法解一元二次方程【优秀10篇】 数学《一元二次方程》教案设计 篇一 一、教材分析 1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容https://m.book118.com/html/2023/0808/8002102062005117.shtm
6.《公式法解一元二次方程》教案及反思(精选6篇)《公式法解一元二次方程》教案及反思1 第1教时 教学内容:12.1 用公式解一元二次方程(一) 教学目标: 知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项. 过程与方法目标:1.通过一元二次方程的引入,培养学生分析问题和解决问题https://wenku.puchedu.cn/25485.html
7.二元一次方程的解法怎样求二元一次方程组的解2)加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元http://sx.ychedu.com/SXJA/QLJJA/593501.html