GPT4理论篇1GPT4核心技术探秘京东云技术团队ChatGPT过桥

这个技术报告着重介绍了GPT-4的强大之处,仅仅给出了几个技术方向的概括,对于想了解技术细节的我们远远不够。

在本文中,我将结合GPT-4的技术报告、GPT-4相对于GPT3.5/ChatGPT的提升、GPT-4和ChatGPT的对比、OpenAI的近期工作,大语言模型(LargeLanguageModel,LLM)模型的科研进展,多模态模型的科研进展等多方面的信息,深入分析GPT-4的技术细节。

1.1zero-shot及few-shot的学习能力

当我们在使用GPT-4进行文本生成时,我们会惊喜的发现GPT-4几乎可以非常完美的回答你各种刁钻的问题,这说明了GPT-4具有非常强大的无监督学习的能力。

此外,GPT-4的技术报告中也给出了大量的无监督学习的例子,甚至在有些场景逼近甚至超过了有监督的SOTA方法。例如在HumanEval[3]的代码生成数据集上,甚至超过了著名的代码生成工具CodeX[3]。此外,在评估正确性的问答数据集TruthfulQA[26]上,GPT-4逼近了SOTA的Anthropic-LM[4]。

1.2逻辑推理能力

GPT-4的技术报告中着重强调的是它相对于ChatGPT在诸多学术考试上的提升,如图1。学术测试评估反映的是GPT-4比ChatGPT有更强的逻辑推理能力。@岳玉涛Max通过19个问题横向对比了GPT-4和ChatGPT的逻辑推理问题[2],其中ChatGPT的正确率是37%,GPT-4的正确率是100%,从对比的例子中我们明显可以看出GPT-4在逻辑推理上有着质的飞跃。

图1:GPT-4与ChatGPT在诸多学术考试中的成绩对比

1.3理解图表能力

GPT-4的一个重大提升是开始涉及多模态,鉴于GPT-4的图像接口还未开放,我们这里借用GPT-4的技术报告中给的例子。在图2中,GPT-4能够精确的理解VGA口Lightning口的不协调之处。这个例子说明GPT-4不仅仅是简单的理解图像中的内容,它最厉害的点在于能够识别图像中的特殊点。

图2:GPT-4具有强大的图、表理解能力

1.4更安全的文本生成能力

GPT-4的技术报告中重点讨论了GPT-4和之前的模型一样有安全问题,但GPT-4的安全性已经大幅提升。技术报告中指出,ChatGPT生成有害内容的概率大概是GPT-4的10倍。图3举了大量的早期GPT-4和成熟GPT-4在有风险提示下生成的内容,可以看出成熟GPT-4的危险性大大降低,但这并不意味着GPT-4就是一个完全无害的模型。

图3:早期GPT-4和成熟GPT-4在生成内容安全性上的示例

GPT-4做了大量的工作来保证模型的安全性,首先它们聘请了50余位不同方向的领域专家进行对抗测试和红队测试,二是训练了一个基于规则的奖励模型(Rule-BasedRewardModels,RBRMs)来辅助模型的训练,关于这一部分的实现细节,我们将会在后面详细展开。

1.5更强的编程能力

GPT-4的技术报告中另外一个重要的对比项是它和ChatGPT在LeetCode上易中难三个不同难度上的代码生成能力。在无监督的情况下,GPT-4在HumanEval数据集上的评估准确率由ChatGPT的48.1%提升至67.0%。GPT-4的技术报告中指出,ChatGPT在LeetCode的166道编程题中仅对了20道,而GPT-4则回答对了55道。表1是GPT-4和ChatGPT在LeetCode的这166道编程题的具体分布。

GPT-4GPT-4(novision)ChatGPTLeetCode(easy)31/4131/4112/41LeetCode(medium)21/8021/808/80LeetCode(hard)3/453/450/45

表1:GPT-4和ChatGPT在LeetCode编程题上的表现效果

1.6处理其它语言的能力

GPT-4在英语以及非英语上都有了大幅提升,在大多数语种上都超过了ChatGPT在英语上的表现,这里我们分别让ChatGPT和GPT-4分别应《让子弹飞》中汤师爷的要求写一首诗,要求是“要有风,要有肉;要有火锅,要有雾;要有美女,要有驴!”。对比两首诗,ChatGPT写的像是没有什么文采的现代诗,而GPT-4生成的内容除了前面两居字数过多之外,基本像一首中国古诗了,甚至还在一定程度上保证了押韵。

1.7处理更长序列的能力

ChatGPT能处理的最大序列是4K个token,而OpenAI开放了8k和32k的两个模型,其中每个汉字大概占用2到2.5个token。GPT-4的token根据指示和回应分别计价(表2),其中32k的价格是8k的两倍,对比ChatGPT的每1000token的0.02美元,GPT-4要贵了15倍左右。

模型PromptCompletion8Kcontext$0.03/1Ktokens$0.06/1Ktokens32Kcontext$0.06/1Ktokens$0.12/1Ktokens

表2:GPT-4的收费细节

他们指出GPT-4表现出了远超文本生成模型理论上能表现的效果,成为了点燃通用人工智能(AGI)烈焰的星星之火,GPT-4已经具备了非常强的推理、计划、解决问题、抽象思考、理解复杂想法、快速学习以及从经验中学习的能力。

有了我们发现的GPT的这些提升,我们便可以结合当前LLM的进展以及OpenAI的工作猜测GPT-4可能的技术方案。因为我们只能依靠公布的算法进行推测,不排除OpenAI内部使用未开放的算法作为解决方案,所以如果我的猜测有误,您就姑且当做学习到了几个独立的算法。

下面我们介绍我们的推测依据以及对这些推测的技术进行简单的介绍。

2.1涌现能力

涌现能力(emergentability)是LLM取得突破性进展最重要的核心技术,涌现能力指的是一种模型在训练过程中,自动地学习到一些高级的、复杂的功能或行为,而这些功能或行为并没有被直接编码或指定。

这种能力可以使得模型在处理新的、未知的任务时表现更加出色,因为它可以自适应地学习到新的功能或行为,而不需要重新训练或修改模型。图4展示了包括GPT-3在内的诸多LLM都展现了非常强的涌现能力,即模型的参数量等指标突破某个指标后,它的性能会快速提升。这里我们可以断定GPT-4的zero-shot和few-shot的学习能力是源自大模型的涌现能力。

模型产生涌现能力主要是取决四点,它们分别是:

其中模型的参数量是最为重要的因素。

图4:GPT-3等诸多大模型在多个任务上都展示出了涌现的能力

2.1.1模型参数量

2.1.2模型的架构

我们可以确定的是,GPT-4的技术报告中指出GPT-4采用了以Transformer为基础的架构,即核心架构还是采用了GPT系列的Decoder-only的结构。对于GPT-4模型的内部细节,我们可以确认的点不多,考虑到GPT-4的速度以及处理长文本的能力,它的内部结构但有这两种可能性:

因为GPT-4还支持图像输入,那么其中一定有关于图像编码的部分,我们将这部分内容放在2.3节详细展开。

2.1.3训练策略和训练数据

GPT-4的基本保持了和ChatGPT相同的训练策略,即基本遵循了预训练+提示+预测的范式,如图6。我们这里主要介绍GPT-4的改进,主要有三点。

图6:ChatGPT的模型训练步骤

1.RBRM

GPT-4的第一个改进则是引入了RBRM,RBRM是根据规则编写的一个四分类模型,它的四个类别是:

使用规则构建NLP模型由来已久,其实NLP的最早期的模型就是基于规则的模型,然后才是基于概率的模型以及基于神经网络的模型。

例如香农把离散马尔可夫过程的概率模型用于描述语言的自动机,以及我们经常使用的正则表达式都是典型的基于规则的文本模型。基于规则的模型的优点是我们不需要训练数据,缺点是它往往是需要领域专家来设计规则,并且往往只能解决一定领域内的问题。我在这里猜测RBRM是由领域专家设计的,由一系列例如正则表达式,有限状态机等文本规则编写的一个零样本分类器。

基于规则的强化学习在近年来也被广泛提及,强化学习的一个重要优化目标是减少搜索空间的范围,而这项工作恰好可以交给规则的约束来完成。在经过规则的约束后,再通过强化学习在剩余的空间中进行搜索,这样就减少强化学习的搜索空间,可以有效提升收敛速度。GPT-4的RBRM的工作原理大致如图7。

图7:RBRM的工作原理

2.多模态提示学习

GPT-4并没有对它的多模态能力的技术细节进行详细介绍,而且它的图像接口没有开放公测。但是我们可以看下多模态领域有没有类似GPT-4的报告中类似的工作。巧合的是微软在今年年初公布的KOSMOS-1[12]拥有非常强的多模态QA的能力,它的思想也和GPT-4非常类似,我们这里可以推测GPT-4使用了和KOSMOS-1类似的多模态提示方法。

KOSMOS-1支持三种类型的数据集,分别是文本生成,图像描述(ImageCaption)生成以及多模态QA,图8是KOSMOS-1在图像描述生成以及QA生成上的例子。在图8.(a)的图像描述生成中,模型的输入是图像的Embedding,输出是预测的图像描述。在图8.(b)的多模态QA中,KOSMOS-1将图像嵌入与文本嵌入共同作为输入,然后用于预测问题的答案。

图8:KOSMOS-1的多模态输入示例

3.思维链

GPT-4的拥有比ChatGPT明显强的逻辑推理能力,在训练模型时应该是使用思维链的方式构建提示样本。思维链不仅支持纯文本输入,还支持图文多模态输入,我们接下来用一节的篇幅来介绍这个重要的内容。

4.能力预测

在我们在某个特定任务上训练一个模型时,我们希望能够预测模型在这个任务上的最终表现,这就是模型的能力预测(CapabilityPrediction)。在自然语言处理和大型语言模型领域,能力预测通常是指预测和评估一个模型在特定任务、领域或场景下的表现能力。

能力预测的目的是为了更好地了解模型的性能,以便优化、调整或改进模型。通过对模型的能力预测,我们可以更好地理解模型的优势和局限,从而为模型的进一步发展和改进提供有价值的反馈。GPT-4在训练时也使用了能力预测,这让他们能够更准确的评估模型的效果,节约了训练成本。

2.2逻辑推理能力

OpenAI为了提升GPT-4的推理能力,很有可能使用了近年来LLM非常重要的思维链以及自提升能力。它们可以看做是提示学习在逻辑推理能力上的针对性优化,下面我们分别介绍它们。从GPT-4的技术报告中,我们可以发现很多GPT-4的训练使用了思维链或者自提升的证据。

2.2.1思维链

思维链的与传统提示学习的不同点是在提示中增加一个推理过程,构建一个由输入,思维链,输出构成的三元组。图9是传统提示和思维链提示的实例。

图9:传统提示学习和思维链提示学习,思维链会在输入中给出推理过程来帮助模型学习推理的能力

思维链也支持多模态的输入,GPT-4的技术报告中也指出了GPT-4使用了多模态的思维链。图13的GPT-4的例子便是一个经典的因为使用思维链训练了模型而产生的包含推理过程的预测结果。图10是上海交大和亚马逊最新发表的一个多模态思维链的框架:Multimodel-COT[14]。

它包含两个阶段,两个阶段共享参数。在第一个阶段,他们将图像和文本输入到模型中来生成理由,也就是思维链。在第二个阶段,他们将原始输入和生成的理由合在一起,输入到模型中来生成答案。

图10:Multimodel-COT的推理过程

2.2.2自提升

图11:LLM可以通过大模型进行自我提升

它的计算过程如下:

你可能已经发现这个方法得到的答案并不一定是正确的答案。作者通过实验得出了两个重要结论:

在得到了推理Path之后,作者根据这个Path构建了四种不同的输入数据,它们分别是:

最后,为了丰富数据集,作者提出了两个方案来扩充数据:一是随机组合两个问题,然后让模型生成新的问题;二是让模型生成推理步骤,并将它加入到训练集中。

2.3理解图表能力

因为GPT-4是支持图像格式的图表输入的,OpenAI著名的多模态算法CLIP[8]讲的是我们可以通过对比学习将图像和文本映射到同一特征空间,如图12。那么结合CLIP的图像编码器便可以实现GPT-4的图像输入,这时我们需要训练一个可以和GPT的文字特征对齐的图像编码器,然后将CLIP的图像编码器的输出作为图像token,最后再加一个embedding层将这个token编码为GPT-4的特征向量。

图12:CLIP的结构,它通过对比学习将图像和文本投影到相同的特征空间

GPT-4除了可以理解图2中这种照片的例子,最神奇的是GPT-4还可以理解图13这种包含了很多细节的学术图片。因为在一个学术图片中,图中代指的符号,目标之间的位置关系都是十分重要的,如果GPT-4仅仅通过一个图像编码就能捕获这些细节信息,那么这个图像编码器一定也展现出了非常强的涌现能力,这个图像编码器也大概率是千亿规模的参数量。

图13:GPT-4具有理解学术图像中具体细节的能力

GPT-4的多模态能力还有一种可能是类似多模态大语言模型(MultimodelLargeLanguageModel,MLLM)。其中微软的KOSMOS-1展示了和GPT-4类似的多模态语言模型的能力,KOSMOS-1在多模态问答上也展示出了非常强的涌现能力,如图14。

KOSMOS-1是一个基于Transformer解码器的多模态模型,它将不同模态的数据拼接到一起,例如表示文本输入,和<\image>表示图像输入,其中图像嵌入使用的是微软的METALM[13]计算得到的特征向量。我们推测GPT-4有可能借鉴了KOSMO-1S的思想,然后结合了OpenAI自身的一些多模态的工作。

图14:微软的KOSMOS-1涌现出了非常强的图像理解能力

关于GPT-4的多模态的更多技术细节,我们可以等GPT-4的图像接口开放之后多多测试才能发现。

2.4更安全的输出

现有的深度学习模型的思想均是使用大模型拟合训练集,对于一个生成模型来说,它的输出内容并不是完全可控的,GPT-4也不例外。GPT-4的技术报告中指出文本模型会存在下面几类的风险输出,例如幻觉、有害内容、歧视、虚假信息、暴力、隐私、网络安全等。GPT-4做了大量工作来缓解这个问题。

GPT-4的第一个缓解风险输出的问题是聘请了50余名来自不同领域专家扮演红队进行对抗测试。红队的工作是提出有危险性的问题,以测试GPT-4给出的输出,并尝试攻克它。通过领域专家的对抗,OpenAI也采集了大量不同方向的领域专家数据来提升GPT-4的安全性。

2.4.1幻觉

幻觉(hallicination)是生成模型都非常难以解决的问题,它指的是模型产生的荒谬的或者不真实的内容,也就是一本正经的胡说八道。随着模型生成的内容语句越来越通顺,内容越来越具有说服力,那么这种幻觉行为将是特别有害的。模型产生幻觉可以归纳为下面几个原因:

GPT-4采用了两个策略来解决这个问题:

第一种方法是利用ChatGPT的数据进行训练。这个方法的优点是ChatGPT在当时已经具有了一定程度拒绝生成有害内容的能力,比在网上爬取的数据具有更高的可靠性。但它的问题是可能会将ChatGPT的问题继承到GPT-4中。而且依靠一个模型的生成内容作为另一个模型的训练数据,可能会导致模型的过拟合。

第二种方法是采用NLP技术来检测模型产生的幻觉样本,包括自动评估和人工评估。这个方法的优点是可以有效的检测和纠正模型产生的幻觉问题。它的缺点是依靠自动评估的方法可能会因为评估模型的缺陷漏掉一些幻觉样本,而人工评估的最大问题是人工成本是非常高昂的。

在幻觉检测方面,Meta有着非常重要的贡献。一方面他们提出了幻觉检测任务并制作了针对这个任务的幻觉检测数据集HADES[15],另一方面他们提出了一个幻觉检测方法[16],这个方法通过合成幻觉数据来对预训练模型进行微调。该模型可以检测一个句子中出现的幻觉词,来对生成内容的真实性进行评估,从而减轻幻觉出现的概率。图15是该方法在机器翻译中的一个例子,标签为1的部分对应了生成的幻觉内容。这里猜测OpenAI可能采用了和Meta类似的方法或数据。

图15:FAIR提出的幻觉检测方法在机器翻译中的示例

具体的讲,OpenAI设计了一个多步骤的过程,使用GPT-4本身来生成是否有幻觉的比较数据,并将它们并入到图6步骤2的奖励模型的训练集中:

2.4.2其它问题

对于可能出现的其它风险输出,OpenAI并没有详细的介绍它的技术方案,不过从他们的技术方案中,我们可以看出他们大概使用了下面几类方法:

2.5编程能力

GPT-4在编程能力上比ChatGPT有了巨大的提升,一方面他可能因为思维链掌握了更强的逻辑分析能力,另一方面它很有可能借鉴了OpenAI著名的代码生成算法CodeX[3]。CodeX是GPT-3在代码生成领域的衍生版本,也是Copilot插件背后的基础算法。CodeX采用了GPT系列的Decoder-only的架构体系,模型的参数量有从12M到12B等多个不同的版本。CodeX的训练分成预训练和微调两个阶段。

在预训练阶段,OpenAI首先从Github上爬取了大量的Python文件,经过清洗后得到了一个大小为159GB的训练集。因为CodeX是一个代码生成模型,所以它并没有使用GPT-3训练好的权重,也没有完全照搬GPT-3的模型超参,而是重新训练了一个代码生成模型。

在微调阶段,OpenAI从竞赛网站,面试网站,Github的单元测试脚本中收集了大约40000条数据。在评估代码正确性上,CodeX并没有使用传统的BLEU分数,而是使用了代码能够通过多少比例的单元测试作为评估标准,并建立了评估测试集HumanEval和评估标准pass@k。

为了避免数据泄露,HumanEval的数据全部是由人类亲自构造的,总共包含164个题目和大量的测试用例。HumanEval将每个函数划分为四类,即函数签名(functionsignature),函数注释,函数主体以及单元测试样本组成。在进行提示学习时,函数签名和函数注释作为输入的提示,函数主体作为要求的输出,单元测试用于评估生成代码的效果。

CodeX的评估标注和Leetcode类似,即有多少比例的测试用例通过测试了,CodeX的评估标准pass@k表示从模型的所有生成答案中随机抽取k个,从这k个答案里得到正确答案的概率。它的计算方式如式(1)。其中n是每个问题生成的答案,k是从n个答案中随机抽取的k个,c是n个答案里通过单元测试的答案数。

CodeX和GPT-4都是GPT-3的下一代模型,让GPT-4使用CodeX现成的思想和数据,并提高模型的编程能力,是再合理不过的工作了。

2.6多语言能力

2.7长序列能力

这里的长序列包含两个方面,一方面是GPT-4是支持多轮对话的,另一方面是GPT-4支持更长的输入数据,下面我们来讨论它们可能使用的技术。

2.7.1多轮对话

ChatGPT和GPT-4都支持连续对话,但OpenAI一直也没有给出连续对话能力的背后技术方案。如果在每一轮对话时都粗暴的把之前的对话重新作为输入提供给模型。虽然理论上讲是行得通的,但这种方式的最大问题是随着对话轮数的增多,输入的数据也会快速增加,进而导致ChatGPT或者GPT-4的预测速度越来越慢,但是我在使用ChatGPT和GPT-4的多轮对话时并没有发现这种速度逐渐变慢的现象。

如果要从模型角度解决这个问题,我们恰好有一个算法可以解决这个问题,它就是Transformer-XL[10]。Transformer-XL的重要改进是提出了片段递归的机制,如图16。片段递归机制类似于Transformer和RNN的结合体,它的核心思想是对于一个长度不限的变长数据,在计算的时候也是固定每个片段的长度并计算这个片段的特征,然在计算下个片段时将前面片段的特征加到当前片段上,从而让模型可以处理任意长度的特征。

图16:Transformer-XL的片段递归机制

2.7.2长序列输入

传统的Transformer并不擅长处理长序列问题,因为输入长度为n的Transformer的复杂度为O(n^2)。Transformer的默认输入长度是512,对于长度大于512的输入数据Transformer的解决方案是将它拆分成多个长度为512的文本块,但是这种会造成上下文碎片的问题,上一节介绍的Transformer-XL便是用来解决这个问题的。

图17:密集注意力和稀疏注意力

因为GPT-4支持更长序列的数据,我在这里也列出了用于高效处理长数据的Transformer的两个变体。因为GPT-4的技术报告太过点到为止,到底GPT-4的网络结构如何,我们只能等待OpenAI的官方公布了。

2.8技术方案总结

这一节我们讨论了很多技术方案,有的具有比较高的可信度,有的则猜测程度较高。下面这个表给出了各个方案的可信度(从1到5逐渐增高)。

涌现能力思维链自提升CLIPKOSMOS-1CodeXXLMTrans-XLSparseTransf553334114

根据我们的上述推测,我们可以猜测GPT-4的技术方案大致如下:

3.1GPT-4的优化方向

尽管GPT-4在文本生成,代码生成,图像理解,逻辑推理能力展现了强大的能力,但它依旧有很大的进步空间的,未来的工作可能有下面几个重点方向:

3.2GPT-4的应用

注意GPT-4并没有彻底解决幻觉等安全性问题,面对GPT-4生成的内容,我们最好在使用之前进行严格的审核,否则可能会发生一些不可解释的问题。也是因为这个原因,GPT-4并不能取代从事这方面的专业工作人员,因为在GPT-4的安全性问题解决之前,始终需要专业人士为其把关,而GPT-4的安全性问题可能将会伴随生成模型的整个生命周期。

随着ChatGPT和GPT-4的提出,国内外的公司快速跟进,掀起了一股LLM模型的研发热潮,也有很多公司提出了自己的LLM.

其中国内具有代表性的工作有下面这些工作。

不仅国内快速跟进,国外的头部公司也推出了自己的LLM,其中具有代表性的有:

除了上面介绍的,国外的LLM还有BigScience的BLOOM,斯坦福的Alpaca,上面介绍过的微软的METALM,KOSMOS-1等,国内的华为的盘古,腾讯的WeLM等等。除了这些通用模型,LLM也被用在细分领域,例如医学领域的HuaTuo[23],金融领域的BloombergGPT[24]等。

首先,它一定程度上撼动了我对传统人工智能的理解,就像宏观物理的很多定理在微观物理上是不成立的,我在传统人工智能上积累的很多经验放在GPT-4里也是不成立的。它展现出的强大的零样本学习能力,以及更高阶的能力是远远超出我对深度学习的传统认知的。

THE END
1.ChatGPT侧边栏助手(GPT如果你认为此加载项违反了Microsoft Store 内容策略,请使用此表单。 提供电子邮件地址 包括你的电子邮件地址,即表示你同意 Microsoft 可以就你的反馈向你发送电子邮件。Microsoft 隐私声明 输入你看到的字符。你也可以选择音频质询。 新|视觉 提交https://microsoftedge.microsoft.com/addons/report/ioikpckdgiogigjjipkkdjncgelpanji?p=2094&p=2094
2.今天给继续大家推荐一个ChromeGPT插件,这个插件是侧边栏插件今天给继续大家推荐一个Chrome GPT插件,这个插件是侧边栏插件,好处是可以在你浏览的当前页面快速调用GPT来辅助你进行一些快捷操作,如:翻译、解释、总结、改写当然你也可以根据自己的使用习惯和主要工作内容自行定义一些快捷操作,都是可以的。也支持在线提问! 插件名称:ChatGPT Sidebar - Support GPT-4 for Plus usehttp://k.sina.com.cn/article_1627825392_6106a4f004000ydig.html
3.Sider:ChatGPT侧边栏+Vision眼睛,GPT1 并排使用:通过 Sider 的 ChatGPT 侧边栏,你可以在任何标签页上调出 ChatGPT,无需来回切换标签。这就是轻松实现多任务处理。 2 AI 游乐场:我们支持所有大牌——ChatGPT 3.5、GPT-4、Claude Instant、Claude 2,以及 Google Bard(Bison 模型)。更多选择,更多洞见。 https://www.chajianxw.com/search-tool/46927.html
4.Sider:ChatGPT侧边栏,GPT4,联网,绘图Sider: ChatGPT侧边栏,GPT-4, 联网, 绘图 插件功能 欧易OKX 领先的加密货币交易平台,注册领200 USDT数币盲盒,币圈常用的交易平台! APP下载官网注册 1 强大的侧边栏 ? ChatGPT 翻译器 ? ChatGPT 词典 ? 语法检查 ? 自定义任何提示https://www.fkxz.cn/dhoenijjpgpeimemopealfcbiecgceod/
5.最新AI创作ChatGPT系统V5.0.5+支持GPT4.0+支持ai绘画+实时语音识别输入+AI创作ChatGPT系统 1、提问:程序已经支持GPT3.5、GPT4.0接口 2、支持三种Ai绘画模型(官方Midjourney模型、GPT3.5KEY绘画、国内其他绘画模型) 3、中英文实时语音识别输入,文章资讯发布功能,菜单工具栏功能,邮箱验证和手机短信验证注册登录,邀请返佣功能。 4、新增Prompt面具角色扮演功能 https://blog.csdn.net/2301_77931454/article/details/131387633
6.ChatGPT中文指南[claude](https://raw.githubusercontent.com/yzfly/awesome-chatgpt-zh/main/imgs/claude.jpg) YouChat > https://you.com/ 注册登陆后即可免费使用,并且由于 you.com 本身是搜索引擎,侧边栏会出现实时搜索结果 ![youchat](https://raw.githubusercontent.com/yzfly/awesome-chatgpt-zh/main/imgs/http://dev.to/yzfly/chatgpt-zhong-wen-zhi-nan-488c
7.GPT4使用经验总结现在访问 GPT-4 的唯一其他方法是升级到 ChatGPT Plus。要跳转到 20 美元的付费订阅,只需单击 ChatGPT 侧边栏中的“升级到 Plus”。输入信用卡信息后,您就可以在 GPT-4 和旧版本的 LLM 之间切换。您甚至可以仔细检查您是否收到 GPT-4 响应,因为它们使用黑色徽标而不是旧型号使用的绿色徽标。 https://www.jianshu.com/p/8caf36cc5a2f
8.扩展中心ChatGPT免费版 GPT4,AI绘画 作者:360U3450156294 版本号:2.1.5 安装 ChatGPT侧边栏助手,协助写文章,写代码,写脚本等 百度AI伙伴 作者:360U3443453244 版本号:1.0.12 安装 百度AI伙伴是您在任何页面上的个人AI助手,可以帮 ChatGPT侧边栏(永久免费) https://ext.chrome.360.cn/webstore/search/
9.SiderAI官网Sider为您提供了一种高效的方式,让您能够专注于工作,提高生产力。 另外,Sider还支持多种AI机器人模型,包括ChatGPT-3.5、GPT-4、Claude和Bard。这些模型拥有强大的智能能力,可以提供更准确、全面的答案和解决方案。无论您遇到什么问题,这些AI机器人模型都可以帮助您找到最合适的解决方法。https://www.zhanlian.net/sites/8614.html
10.Sider:ChatGPT侧边栏+GPTChatPDF 综合图像工具 群组人工智能聊天 支持o1 & o1-mini、GPT-4o mini、GPT-4o、Claude、Gemini 和 Llama 任何问题都能立即得到解决 一个问题,@所有bots同时回答 支持ChatGPT 4o Scott Gardner 易用性、实用性和灵活性都是A++。我尝试过几款最高评价的LLM AI扩展,Sider绝对是我目前最喜欢的。我喜欢可以通http://www.sider.ai/
11.vscodechatgpt:一款超好用的开源ChatGPTVSCode插件今天给大家推荐一个开源的 VSCode 插件:vscode-chatgpt 。 这个开源插件可以将 OpenAI ChatGPT 集成到 VSCode。 功能特色如下: ?支持 GPT-4、GPT-3.5、GPT3 或 Codex 模型; 在侧边栏对话窗口中进行问答; 停止响应,减少 tokens 消耗; https://www.modb.pro/db/621784
12.公益免费的ChatGPTAPI,FreeChatGPTAPI,GPT4API,可 公益免费的ChatGPT API,Free ChatGPT API,GPT4 API,可直连,无需代理,使用标准 OpenAI APIKEY 格式访问 ChatGPT,可搭配ChatGPT-next-web、ChatGPT-Midjourney、Lobe-chat、Botgem、FastGPT、沉浸式翻译等项目使用 - popjane/free_chatgpt_apihttps://github.com/popjane/free_chatgpt_api
13.GPT4太贵?试试这6个免费且优秀的替代方案网址:https://agentgpt.reworkd.ai/zh 使用说明:ChatGPT被淘汰了?Auto-GPT到底有多强 Bard - Google AI 的免费工具。 它可以生成文本,翻译语言,编写推文,回答问题,免费浏览。个人最喜欢的gpt的替代。同时具有4600亿的参数,传说比GPT-4还强大,唯一遗憾的的是不支持中文。 https://developer.aliyun.com/article/1258203
14.《财富》杂志:全球爆红的ChatGPT是如何诞生的?OpenAI在贝塔测试版GPT-4中采用了更强大的大语言模型,预计该版本将于今年甚至很快发布。阿尔特曼也表示,公司正在研发一款可根据文本描述生成视频的系统。此外,在1月中旬,OpenAI表示其计划发布ChatGPT的商业版。付费用户可通过一个界面使用聊天机器人,更容易将其整合到自己的产品和服务当中。https://mba.ncu.edu.cn/zndt/qygc/955fc954255549fa9ac004ee41a03dda.htm
15.如何在ChatGPT上使用GPT4?(GPT4是什么?)电脑知识是的,Bing AI 由 OpenAI 的 GPT-4 模型提供支持,并且已经有一段时间了。所以,如果你一直在使用新的 AI 驱动的必应,你就在不知不觉中使用了 GPT-4。如果您担心 Bing Chat 上的 GPT-4 和 ChatGPT 上的 GPT-4 之间的响应质量差异,请不要惊慌。http://www.dnpz.net/diannaozhishi/6145.html