小升初数学知识点[共15篇]

在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是一些常考的内容,或者考试经常出题的地方。那么,都有哪些知识点呢?下面是小编为大家收集的小升初数学知识点,希望能够帮助到大家。

小升初数学知识总结:小数

自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

纯小数:个位是0的小数。

带小数:各位大于0的小数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414

不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3.141592654

无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3.141414

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654

小升初数学知识总结:利润

利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

小升初数学知识总结:百分数

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

要学会把小数化成分数和把分数化成小数的化发。

小升初数学知识总结:倍数与约数

最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的'一个叫做这几个数的最大公约数。

最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

互质数:公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

一、分数除法

1、分数除法的意义:

乘法:因数因数=积除法:积一个因数=另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

[]叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题

(未知单位1的量(用除法):已知单位1的几分之几是多少,求单位1的量。)

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是的:单位1的'量分率=分率对应量

(2)分率前是多或少的意思:单位1的量(1分率)=分率对应量

2、解法:(建议:最好用方程解答)

(1)方程:根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):分率对应量对应分率=单位1的量

3、求一个数是另一个数的几分之几:就一个数另一个数

4、求一个数比另一个数多(少)几分之几:两个数的相差量单位1的量或:

①求多几分之几:大数小数1

②求少几分之几:1-小数大数

三、比和比的应用

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如15:10=1510=3/2(比值通常用分数表示,也可以用小数或整数表示)

∶∶∶∶

前项比号后项比值

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

比前项比号:后项比值

除法被除数除号除数商

分数分子分数线分母分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意:最后结果要写成比的形式。

如:15∶10=1510=3/2=3∶2

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如:已知两个量之比为,则设这两个量分别为。

一.整数和小数

1.最小的一位数是1,最小的自然数是0

2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

4.小数的分类:小数有限小数

无限循环小数

无限小数

无限不循环小数

5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

二.数的整除

1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的'倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

最小的质数是2,最小的合数是4

1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

解方程,求方程的解的过程叫做解方程。

⒈含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。

⒉使等式成立的未知数的值,称为方程的解,或方程的'根。

⒊解方程就是求出方程中所有未知数的值的过程。

⒋方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。

⒌验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。

⒍注意事项:写“解”字,等号对齐,检验。

⒎方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)

1、长度单位换算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

2、面积单位换算

1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

3、体积(容积)单位换算

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

1立方分米=1升1立方厘米=1毫升1升=1000毫升

4、质量单位换算

1吨=1000千克1千克=1000克1千克=1公斤

5、人民币单位换算

1元=10角1角=10分1元=100分

1世纪=100年1年=12月=4个季度大月(31天)有:135781012月小月(30天)的有:46911月

平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时

1时=60分1分=60秒1时=3600秒

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数除数=被除数除数的倒数。例3==3=3=5

2、除法转化成乘法时,被除数一定不能变,变成,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

②除以小于1的数,商大于被除数:ab=c当b1时,c0b0)

③除以等于1的数,商等于被除数:ab=c当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据除以几个数,等于乘上这几个数的积的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

注:(ab)c=acbc

四、比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示,写成分数的`形式,读作几比几。

例:12∶20==1220==0.612∶20读作:12比20

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变3、化简比:化简之后结果还是一个比,不是一个数。

(1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。

4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

5、比和除法、分数的区别:

除法被除数除号()除数(不能为0)商不变性质除法是一种运算

分数分子分数线()分母(不能为0)分数的基本性质分数是一个数

比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系

附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

一、专题解析

解答火车行程问题可记住以下几点:

二、火车过桥问题常用方法

⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.

⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.

对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

三、例题解析

1、火车过桥问题习题及答案

一列火车通过360米长的'铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米.

考点:列车过桥问题.

解答:解:车速:(360-216)÷(24-16)

=144÷8

=18(米),

火车长度:18×24-360=72(米),

2、火车过桥练习题

3、甲、乙两人在与铁路平行的马路上背向而行,甲骑车每小时36千米,乙步行每小时行3.6千米,一列火车均速向甲驶来,从甲旁开过用了10秒中而在乙旁开过用了21秒,问火车的长和速度分别是多少

4、一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度(得数保留整数)

1-6年级知识体系

小学一年级九九乘法口诀表。学会基础加减乘。

小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级比例百分比概率,圆扇圆柱及圆锥。

必背定义、定理公式

三角形的面积=底×高÷2。公式S=a×h÷2

正方形的面积=边长×边长公式S=a×a

长方形的面积=长×宽公式S=a×b

平行四边形的面积=底×高公式S=a×h

梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh

长方体(或正方体)的体积=底面积×高公式:V=abh

正方体的体积=棱长×棱长×棱长公式:V=aaa

圆的周长=直径×π公式:L=πd=2πr

圆的面积=半径×半径×π公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的'积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

二、数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

5、加数+加数=和

一个加数=和+另一个加数

被减数-减数=差

减数=被减数-差

被减数=减数+差

因数×因数=积

一个因数=积÷另一个因数

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克

1千克=1000克=

1公斤=1市斤

1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

15、要学会把小数化成分数和把分数化成小数的化发。

16、公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的一个,叫做公约数。)

17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3.141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……

34、什么叫代数代数就是用字母代替数。

35、什么叫代数式用字母表示的式子叫做代数式。如:3x=ab+c

三、一般运算规则

1每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

21倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

4单价×数量=总价

总价÷单价=数量

总价÷数量=单价

6加数+加数=和

和-一个加数=另一个加数

7被减数-减数=差

被减数-差=减数差+减数=被减数

8因数×因数=积

积÷一个因数=另一个因数

9被除数÷除数=商

被除数÷商=除数商×除数=被除数

四、小学数学图形计算公式

1正方形

C周长S面积a边长

周长=边长×4C=4a

面积=边长×边长S=a×a

2正方体

V:体积a:棱长

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3长方形

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4长方体

V:体积s:面积a:长b:宽h:高

表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

体积=长×宽×高V=abh

5三角形

s面积a底h高

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6平行四边形

面积=底×高s=ah

7梯形

s面积a上底b下底h高

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8圆形

S面积C周长∏d=直径r=半径

周长=直径×∏=2×∏×半径C=∏d=2∏r

面积=半径×半径×∏

9圆柱体

v:体积h:高s;底面积r:底面半径c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

一、数学知识点:方阵问题

1、概念和分类

学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵。

方阵包括实心方阵和空心方阵。如果方阵排满物体,叫做实心方阵;如果方阵的中间不排物体,叫做空心方阵。而实心方阵的每一层又可以单独看成一个空心方阵,因此空心方阵的规律对它也是适用的。

2、基本规律

(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的`人数就少2,

(2)每层总数=[每边人(或物)数-1]×4

每边人(或物)数=每层总数÷4+1

(3)实心方阵

总人(或物)数=每边人(或物)数×每边人(或物)数

(4)空心方阵

总人(或物)数=(最外层每边人(或物)数-层数)×层数×4

总人(或物)数=(最外层人(或物)数+最内层人(或物)数)*层数/2

最外层每边数=总人(或物)数÷4÷层数+层数

二、数学知识点:鸡兔同笼

1、鸡兔同笼问题的来历

这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔

你会解答这个问题吗你想知道《孙子算经》中是如何解答这个问题的吗

2、鸡兔同笼的解题思路

(1)砍足法

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了。

1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的`数量,所以百分数不能带单位。

2.百分数的意义:表示一个数是另一个数的百分之几。

例如:25%的意义:表示一个数是另一个数的25%。

3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

4.小数与百分数互化的规则:

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

5.百分数与分数互化的规则:

把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。

两端都在圆上,并过圆心的线段叫直径,用d表示。

2.圆有无数条半径,有无数条直径。

3.圆心决定圆的位置,半径决定圆的大小。

4.把圆对折,再对折就能找到圆心。

5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.

圆的周长

8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取3.14.

9.C=d或C=r.半圆的周长

10.1=3.142=6.283=9.424=12.565=15.76=18.84

7=21.988=25.129=28.2610=31.4

圆的面积

11.用S表示圆的面积,r表示圆的半径,那么S=r^2S环=(R^2-r^2)

12.11^2=12112^2=14413^2=16914^2=19615^2=22516^2=256

17^2=28918^2=32419^2=36120^2=400

13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。

面积相同时,长方形的周长最长,正方形居中,圆周长最短。

周长相同时,圆面积最大,正方形居中,长方形面积最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

第四单元:比的'认识

15.两个数相除,又叫做这两个数的比。比的后项不能为0.

16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。

列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。

二、分数乘法

分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

2、分数乘分数是求一个数的几分之几是多少。

分数的化简:分子、分母同时除以它们的最大公因数。

关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。

分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

倒数的意义:乘积为1的两个数互为倒数。

特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

求倒数的方法:1、求分数的倒数是交换分子分母的位置。

2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

1的倒数是它本身。因为1*1=1

0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)

三、分数除法

分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。

除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

分数除法的基本性质:强调0除外

化简比:

1、用比的前项和后项同时除以它们的最大公约数。

2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

3、两个小数的比,向右移动小数点的位置。也是先化成整数比。

比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

常用来做判断的:

一个数除以小于1的数,商大于被除数。

一个数除以1,商等于被除数。

一个数除以大于1的数,商小于被除数。

五、百分数

百分数的约分:百分数化成分数,写成分数形式,再约分。

分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。

百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

六、统计

条形统计图可以知道每个数量的多少。

折现统计图可以知数量的增减,

扇形统计图可以知道部分和总量的关系。

1分数加减法应用题:

分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2分数乘法应用题:

是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位1的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3分数除法应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。

已知一个数的几分之几(或百分之几),求这个数。

特征:已知一个实际数量和它相对应的分率,求单位1的量。

解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际

数量。

4出勤率

发芽率=发芽种子数/试验种子数100%

小麦的出粉率=面粉的重量/小麦的重量100%

产品的合格率=合格的产品数/产品总数100%

职工的出勤率=实际出勤人数/应出勤人数100%

5工程问题:

数量关系式:

6纳税

纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

缴纳的税款叫应纳税款。

应纳税额与各种收入的(销售额、营业额、应纳税所得额)的比率叫做税率。

*利息

存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

--

第二章度量衡

一长度

(一)什么是长度

长度是一维空间的度量。

(二)长度常用单位

*公里(km)*米(m)*分米(dm)*厘米(cm)*毫米(mm)*微米(um)

(三)单位之间的换算

*1毫米=1000微米*1厘米=10毫米*1分米=10厘米*1米=1000毫米*1千米=1000米

二面积

(一)什么是面积

面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。

(二)常用的面积单位

*平方毫米*平方厘米*平方分米*平方米*平方千米

(三)面积单位的换算

*1平方厘米=100平方毫米*1平方分米=100平方厘米*1平方米=100平方分米

*1公倾=10000平方米*1平方公里=100公顷

三体积和容积

(一)什么是体积、容积

体积,就是物体所占空间的大小。

容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

(二)常用单位

1体积单位

*立方米*立方分米*立方厘米

2容积单位*升*毫升

(三)单位换算

*1立方米=1000立方分米

*1立方分米=1000立方厘米

2容积单位

*1升=1000毫升

*1升=1立方米

*1毫升=1立方厘米

四质量

(一)什么是质量

质量,就是表示表示物体有多重。

*吨t*千克kg*克g

(三)常用换算

*一吨=1000千克

*1千克=1000克

世纪、年、月、日、时、分、秒

*1世纪=100年

*1年=365天平年

*一年=366天闰年

*一、三、五、七、八、十、十二是大月大月有31天

*四、六、九、十一是小月小月小月有30天

*平年2月有28天闰年2月有29天

*1天=24小时

*1小时=60分

*一分=60秒

六货币

(一)什么是货币

货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。

*元*角*分

*1元=10角

*1角=10分

-

第三章代数初步知识

一、用字母表示数

1用字母表示数的意义和作用

*用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

s=vt

v=s/t

t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc

b=a/c

c=a/b

(2)运算定律和性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c)=a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

c=2(a+b)

s=ab

正方形的边长a用表示,周长用c表示,面积用s表示。

c=4a

s=a

平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2

s=mh

圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=d=2r

s=r

扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=nr/360

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=sh

s=2(ab+ah+bh)

v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.

s=6a

v=a

圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.

s侧=ch

s表=s侧+2s底

圆锥的高用h表示,底面积用s表示,体积用v表示.

v=sh/3

3用字母表示数的写法

数字和字母、字母和字母相乘时,乘号可以记作.,或者省略不写,数字要写在字母的前面。

当1与任何字母相乘时,1省略不写。

在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

4将数值代入式子求值

*把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

*同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

二、简易方程

(一)方程和方程的解

1方程:含有未知数的等式叫做方程。

注意方程是等式,又含有未知数,两者缺一不可。

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

2方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

三、解方程

四、列方程解应用题

1列方程解应用题的意义

*用方程式去解答应用题求得应用题的未知量的方法。

2列方程解答应用题的步骤

*弄清题意,确定未知数并用x表示;

*找出题中的数量之间的相等关系;

*列方程,解方程;

*检查或验算,写出答案。

3列方程解应用题的方法

*综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

*分析法:先找出等量关系,再根据具体建立等量关系的.需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解应用题的范围

小学范围内常用方程解的应用题:

a一般应用题;

b和倍、差倍问题;

c几何形体的周长、面积、体积计算;

d分数、百分数应用题;

e比和比例应用题。

五比和比例

1比的意义和性质

(1)比的意义

两个数相除又叫做两个数的比。

:是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2比例的意义和性质

(1)比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

3正比例和反比例

(1)成正比例的量

用字母表示y/x=k(一定)

(2)成反比例的量

用字母表示xy=k(一定)

什么叫做单项式和多项式?

不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母

多项式。例如:4x+7,3x2+5,6x2+7x+2等都是多项式。

约数倍数:

(1)最大公约最小公倍数(2)约数个数决定法则(常考内容)

质数合数:

(1)质数、合数的概念和判断(2)分解质因数(重点)

余数问题:

(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

整除问题:

(1)数的整除的特征和性质(新初一分班常考内容)

(2)位值原理的应用(用字母和数字混合表示多位数)

这四个问题我们需要掌握到什么样的程度?

从近几年的来看,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的'一张新初一分班试卷的完成应该是能取得很好的成绩的。对此,酷学网给出学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

1、除和除以的区别

a除以b或a被b除列式为:a÷b,a除b,或用a去除b,列式为:b÷a

2、半圆的周长≠圆周长的一半

这两个看似相同,实则不同,因为半圆的周长还多出一个直径。

压路机滚动一周前进多少米是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。

4、“无盖”易算成“有盖”

无盖的水桶,水池,金鱼缸,水槽等求表面积时一定要减少一个底面积。

5、大数比小数大几分之几:

(大数—小数)÷单位“1”的量。

6、绳子长短比较问题

两根同样长的绳子,一根剪去1/2米另一根剪去1/2,剩下的长度无法比较;

7、余数商问题

0.52÷0.17商是3,余数不是1而是0.01

求××率或百分之几的列式中,最后必须“×100%”

9、切忌半个人、半棵树:

在求总人数、总只数、总棵树……的应用题时,结果不可能是分数和小数

10、改写数的注意:

改写一个准确数,不要求“四舍五入”取近似值时,一定要把“万”或“亿”后面的数写到小数部分;只有大约或省略“万”或“亿”位后面的尾数时,才用“四舍五入”求近似值,末尾一定要写“万”或“亿”

11、大数读法:读几个0的问题

【正确答案】2个

【例题评析】大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。

12、近似值问题

【错误答案】9999

【正确答案】14999

【例题评析】四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。

13、数大小排序问题:注意题目要求的大小顺序

【错误答案】3.14<π<22/7

【正确答案】22/7>π>3.14

【例题评析】题目怎么要求就怎么来,别瞎胡闹。并且一定要写原数排序。

14、比例尺问题:注意面积的比例尺

【错误答案】400

【正确答案】0.2

【例题评析】很多同学直接用800000÷20xx,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的

20xx长度单位。但是本题牵扯到面积,需要转化为面积的比例尺。需要把长度的比例尺平方,即图上1面积单位是实际中的4000000面积单位。

15、正反比例问题:未搞清正比例、反比例的含义

【错误答案】√

【正确答案】×

【例题评析】若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。

16、比的问题:注意前后项的顺序

【错误答案】16:9

【正确答案】9:16

【例题评析】谁是比的前项,谁是比的`后项,一定要睁大眼睛看清楚!

17、比的问题:比与比值的区别

【错误答案】9:16

【正确答案】9/16

【例题评析】比值是一个结果,是一个数。

18、单位问题:不要漏写单位

【错误答案】16

【正确答案】16平方厘米

【例题评析】面积问题,结果算对了,但没有写该写的单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!

19、单位问题:注意单位的一致

【错误答案】75

【正确答案】25.05

【例题评析】很多同学没有看到kg与g的单位不一致,直接给出了75的错误答案。

20、闰年,平年问题:不清楚闰年的概念

【错误答案】闰年

【正确答案】平年

【例题评析】四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,20xx年),则必须为400的倍数才是闰年,否则为平年。

21、解方程问题:括号前面是减号,去括号要变号!移项要变号!

【错误答案】其他

【正确答案】x=2

【例题评析】去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,切记!

22、计算问题:牢记运算顺序

【错误答案】20

【正确答案】20/49

【例题评析】530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运算、运算顺序以及提取公因数等计算基本功的考察。

23、平均速度问题

【错误答案】(1+3)÷2=2(米/秒)

【正确答案】设上山全程为3米,则平均速度为:(3×2)÷(3÷1+3÷3)=1.5(米/秒)

24、题目有多种情况

【错误答案】80度

【正确答案】50度或80度

【例题评析】很多类型的题目,结果往往不止一个。同学们一定要注意思考的缜密性,平时做题时多总结,尽量把所有情况都想全。不要做出一个答案后,就以为大功告成。

25、注意表述的完整性

【错误答案】等腰三角形

【正确答案】等腰直角三角形

【例题评析】这种题目,只有平时训练时多思考,多总结,考试时才能保证不犯错误。

26、正方的面积与周长的比较

边长为4cm的正方形的面积和周长不!相!等!,虽然数值结果都是16,但因为单位不同,所以16厘米≠16平方厘米,这是无法比较的!

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数

(或小数+差=大数)

植树问题

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

THE END
1.整式的加减法混合运算二年级练习题及答案(二年级数学计算题100道浏览人气:87 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币(10金币=人民币1元) 整式的加减法混合运算二年级练习题及答案(二年级数学计算题100道).pdf 关闭预览 想预览更多内容,点击免费在线预览全文 免费在线预览全文 计算题100道 88 53 64 42 83 - 57 + 46 - 17 + 54 - 35 = = = = =https://m.book118.com/html/2022/0915/7013061143004164.shtm
2.整式的混合运算专项练习99题(有答案有过程)文档大小: 313.35K 文档页数: 10页 顶/踩数: 0/0 收藏人数: 11 评论次数: 0 文档热度: 文档分类: 幼儿/小学教育--小学考试 系统标签: 混合运算专项练习答案第第过程 第第第 111 页页页 共共共 10?10?10?页页页 第第第 222 页页页 共共共 10?10?10?页页页 第第第 333 页页页https://www.docin.com/p-2407676648.html
3.整式的加减练习100题(有答案)整式的加减专项练习100题 1、3(a+5b)-2(b-a) 2、3a-(2b-a)+b 3、2(2a2+9b)+3(-5a2-4b) 4、(x3-2y3-3x2y)-(3x3-3y3-7x2y) 5、3x2-[7x-(4x-3)-2x2] 6、(2xy-y)-(-y+yx) 7、5(a2b-3ab2)-2(a2b-7ab) 8、(-2ab+3a)-2(2a-b)+2ab http://www.360doc.com/document/22/1125/08/69179867_1057456410.shtml
4.七年级数学计算题100道带答案知识点总结归纳计算题专项训练①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1; ③分母中不含根号; 7.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式的乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里http://tui.guyuenglish.com/news/12241.html
5.加减乘除计算题及答案加减乘除计算题100道题淘豆网为你提供加减乘除计算题及答案、加减乘除计算题100道题和加减乘除计算题下载的服务,相当于加减乘除计算题大全,这里你可以找到所有关于加减乘除计算题的内容。https://www.taodocs.com/topdoc/96775-0-0-7.html
6.混合运算100道百度贴吧-混合运算100道专题,为您展现优质的混合运算100道各类信息,在这里您可以找到关于混合运算100道的相关内容及最新的混合运算100道贴子https://tieba.baidu.com/hottopic/browse/hottopic?topic_id=6460625
7.代数式混合运算100题计算题100道 最佳整式的混合运算练习题(新) 九年级数学代数式运算习题及答案 七年级数学代数式合并同类项整式加减练习题(附答案) 整式混合运算练习题汇编 初一整式与代数式计算题 七年级数学《代数式》习题(含答案) 代数式及其运算 初一下册代数式练习题及答案 https://m.gywlwh.com/k/daishushihunheyunsuan100ti/
8.第十五章二次根式文档下载试卷下载(包括简单的分母有理化);二次根式的加减运算,实际上是以二次根式的化简为前提,而后合并“同类的最简二次根式”.教材借助于和“整式加减的合并同类项”的类比,启发生自主地理解并掌握这类运算;在二次根式的混合运算中,使生认识到:与数、整式和分式的混合运算一样,二次根式的混合运算也是先算乘除,后算加减,有https://xiazai.12tiku.com/sj/19999/216769.html
9.整式的加减乘除混合运算试题答案解析,初中数学试题答案解析66查看答案 计算(1)2(a4)3﹣a2a10+(﹣2a5)2÷a2(2)(a﹣2b)(a2+2ab+4b2)﹣a(a+3b 查看答案 (1)计算:(﹣3)2﹣2﹣3+30(2)化简:(x3)2÷(﹣x)2+(﹣2x)2(﹣x2) 查看答案 规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为 [ 查看答案 下列计算中,不正确的https://www.ggtiku.com/wtk/list-b111121-s113252-l66.html
10.整式的加减混合运算2x-3y)+(5x+4y) (8a-7b)-(4a-5b) -(3x-2y + z)-[5x-(x-2y +z ) -3xhttps://wenwen.soso.com/z/q1704482246.htm
11.初中数学不等式练习题考点:整式的混合运算。1923992 分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可. 解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,∴a=4﹣1,解得a=3. 故本题答案为:3. 点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键. https://mip.ruiwen.com/shiti/1621367.html