人教版八年级上册数学知识点大全

在我们平凡无奇的学生时代,大家都背过各种知识点吧?知识点有时候特指教科书上或考试的知识。哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的人教版八年级上册数学知识点,欢迎阅读与收藏。

一、变量与函数

1.变量:在一个变化过程中,数值发生变化的量叫做变量。

2.常量:数值始终不变的量叫做常量。

3.函数:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说y是x的函数,x是自变量。Y的值叫函数值。

4.函数解析式:表示x与y的函数关系的式子,叫函数解析式。自变量的取值不能使函数解析式的分母为0。

5.函数的图像:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。

6.描点法画函数图像的步骤:①列表、②描点、③连线。

表示函数的方法:①列表法、②解析式法、③图像法。

二、一次函数

1.正比例函数:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

2.正比例函数的图象与性质:

(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。

3.一次函数:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数。当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例。

4.函数的图象与性质:

(1)一次函数y=kx+b(k,b为常数,且k≠0)的图象是一条直线,我们称它为直线y=kx+b。相当于由直线y=kx平移|b|个单位长度而得。

(2)性质:当k>0时,直线y=kx+b从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx+b从左向右下降,即随着x的增大y反而减小。

5.求函数解析式的方法:待定系数法(先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。)

一、整式的乘法

1.同底数幂的乘法:aman=am+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。

2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。

3.积的乘方法则:(ab)n=anbn(n为正整数)积的乘方=乘方的积

4.单项式与单项式相乘法则:

(1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式

5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式

1.平方差公式:(a+b)(a-b)=a2-b2。

2.完全平方公式:(a±b)2=a2±2ab+b2

口诀:前平方,后平方,积的两倍中间放,中间符号看情况。(这个情况就是前后两项同号得正,异号得负。)

3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

第七章知识点

1、二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

2、二元一次方程的解

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

3、二元一次方程组

含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

4、二元一次方程组的解

二元一次方程组中各个方程的.公共解,叫做这个二元一次方程组的解。

5、二元一次方程组的解法

(1)代入(消元)法(2)加减(消元)法

第八章知识点

1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

2、平均数

(2)加权平均数:

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

数据的收集、整理与描述

一、知识框架

二、知识概念

1、全面调查:考察全体对象的调查方式叫做全面调查、

2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查、

3、总体:要考察的全体对象称为总体、

4、个体:组成总体的每一个考察对象称为个体、

5、样本:被抽取的所有个体组成一个样本、

6、样本容量:样本中个体的数目称为样本容量、

7、频数:一般地,我们称落在不同小组中的数据个数为该组的频数、

8、频率:频数与数据总数的比为频率、

9、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定

1、两组对边分别相等的四边形是平行四边形

2、对角线互相平分的四边形是平行四边形;

3、两组对角分别相等的四边形是平行四边形;

4、一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

矩形判定定理:

1、有一个角是直角的平行四边形叫做矩形。

2、对角线相等的平行四边形是矩形。

3、有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1、一组邻边相等的平行四边形是菱形。

2、对角线互相垂直的平行四边形是菱形。

3、四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是—1(约为0、618)的矩形叫做黄金矩形。

如何提高解答数学题的能力

数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

(1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

(2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

(3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

多项式定义

在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

1、实数的概念及分类

①实数的分类

②无理数

无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

开方开不尽的数,如√7,3√2等;

有特定意义的数,如圆周率π,或化简后含有π的数,如π/+8等;

有特定结构的数,如0.1010010001…等;

某些三角函数值,如sin60°等

2、实数的倒数、相反数和绝对值

①相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

②绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0.0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

③倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1.0没有倒数。

④数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

⑤估算

3、平方根、算数平方根和立方根

①算术平方根

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

②平方根

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方求一个数a的平方根的运算,叫做开平方。注意√a的双重非负性:√a≥0;a≥0

③立方根

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(或三次方根)。

表示方法:记作3√a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:-3√a=3√-a,这说明三次根号内的负号可以移到根号外面。

4、实数大小的比较

①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数a-b>0a>b;a-b=0a=b;a-b<0a<b。

求商比较法:设a、b是两正实数,

绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

平方法:设a、b是两负实数,则a2>b2a<b。

5、算术平方根有关计算(二次根式)

①含有二次根号“√”;被开方数a必须是非负数。

②性质:

③运算结果若含有“√”形式,必须满足:

被开方数的因数是整数,因式是整式

被开方数中不含能开得尽方的因数或因式

6、实数的运算

①六种运算:加、减、乘、除、乘方、开方。

②实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

③运算律

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(ab)c=a(bc)

乘法对加法的分配律a(b+c)=ab+ac

①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

2、二元一次方程组

①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

③二元一次方程组的解法代入(消元)法、加减(消元)法

④一次函数与二元一次方程(组)的关系:

一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解

一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数和的图象的交点。

当函数图象有交点时,说明相应的二元一次方程组有解;

当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

THE END
1.初一数学整式的加减,整式的概念辨析,7道期中考试常考题初一数学整式的加减,整式的概念辨析,7道期中考试常考题老Z讲数学 河北 0 打开网易新闻 体验效果更佳所属专栏 初一数学整式的加减综合培优36讲 已更新6集 上一集 初一数学整式的加减,多项式的相关概念及例题,最后2道划重点 下一集 整式的升幂排列及降幂排列,注意要保持原有符号不变https://m.163.com/v/video/VAEL7NC44.html
2.整式的定义2.1整式(1) 教学目标 1使学生理解、掌握单项式的有关概念,能准确地说出给定单项式的系数和次数; 2初步培养学生的观察——分析和归纳——概括能力,使学生初步认识特殊与一般的辩证关系 教学重点和难点 重点:单项式的定义;单项式的系数和次数 难点:单项式的系数和次数 课堂教学过程设计 一、 提出问题 《整式》教https://www.unjs.com/h/b/258422.html
3.整式的定义与性质.pptx整式的定义与性质汇报人:XX2024-02-05XXREPORTING目录整式基本概念及分类整式基本性质探讨整式运算技巧与实例分析整式在生活中的应用场景整式性质在数学竞赛中拓展应用总结回顾与未来展望PART01整式基本概念及分类REPORTINGXX整式定义整式是代数式的一种,由数字、字母和有限次数的加、减、乘运算(包括乘方)得到的代数表达式https://m.renrendoc.com/paper/314150907.html
4.什么是整式(数学中整式的定义是什么)整式在数学中有着广泛的应用,它是高斯消元法和多项式回归等许多数学理论和方法的基础。在物理学、化学和工程学中,整式也被广泛地应用于描述物理过程、计算化学反应和建立各种物理模型。 整式不仅是数学学习的基础,也在各个领域中具有重要的应用价值。 2、数学中整式的定义是什么 http://report.ynzslm.com/show-136063.html
5.专题二整式的加减压轴题考点3整式的加减新定义问题2023专题二 整式的加减 考点3 整式的加减 新定义问题 典例精析 [例]我们规定:使得a-b=2ab 成立的一对数a,b 为“有趣数对”,记为(a,b).例如,因为2-0.4=2×2×0.4,(-1)-1=2×(-1)×1,所以数对(2,0.4),(-1,1)都是“有趣数对”. (1)数对(1,),(1.5,3),(- ,-1)中,是“有趣数对”的是https://www.zxxk.com/soft/42020254.html
6.整式和分式的区别统称为什么整数可以看成是分母为1的分数,也就是说整个有理数都可以看成是分数。分式可以类比为分数,但是把整式看成是分母为常数的分式时,这个分式还是称为整式,这是由整式和分式的分类或者说定义决定的。 1整式和分式的区别 整式和分式的主要区别在于整式的分母中不含有字母,而分式的分母中含有字母。整式包括单项式和多项式,http://m.chusan.com/zhongkao/347927.html
7.代数式的定义代数式的书写规则(3)代数式中不能出现除号,相除关系要写成分数的形式(4)数字与数字相乘时,乘号(也可以 宜城教育资源网www.ychedu.com 代数式的定义-代数式的书写规则-代数式和整式的区别 下载地址1 宜城教育资源网免费提供课件、试题、教案、学案、教学反思设计等备课资源。数百万资源,无须注册,天天更新!http://sx.ychedu.com/SXJA/JLJJA/605972.html
8.快速幂与位运算快速位运算快速幂运用分治的思想 我们先有整式乘法的定义: x p × x k = x p + k x^p\times x^k=x^{p+k}xp×xk=xp+k 所以我们有: x k = x ? k 2 ? × x ? k 2 ? x^k=x^{\lfloor\frac{k}{2}\rfloor}\times x^{\lfloor\frac{k}{2}\rfloor}xk=x?2k×x?2khttps://blog.csdn.net/tidongCrazy_/article/details/104538857
9.小数和分数是不是整式?整数是不是整式?为什么?单项式的定义是数字单项式的定义是数字和字母的乘积叫做单项式,那么,小数,分数,整数为单项式应怎么解释? 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 两个都是,因为单独的一个数也是单项式,我们叫它常数项,单项式和多项式又统称为整式,小数和分数还有整数当然是整式了 解析看不懂?免费查看同类题视频解析查看https://qb.zuoyebang.com/xfe-question/question/6907821b8725a3170ff40b503b74eacf.html
10.整式项的定义,根号X是不是?根号x是根式不是整式整式是分母中不含字母的有理式 解析看不懂?免费查看同类题视频解析查看解答 相似问题 根号x-5是不是整式 (根号5)+a的四次是不是整式 根号下X-3+根号下3-X有意义,则X= 是否存在这样的整数x,使它同时满足以下两个条件:(1)式子根号x-20和根号29-x都有意义(2)正负根号x仍是整 使https://www.zybang.com/question/1f2f8ea3c0fa70e25d5bcf20eb981da5.html