此外不得不说的是,和国外相比,国内大部分行业的营销理念更加稚嫩、营销环境稍显恶劣,无论是企业主还是营销人员更加浮躁和急迫。包括营销自动化、DMP等一些非常好的理念和工具在国内大范围的实行起来前途既光明又曲折。希望这个访谈能够帮助我们的企业高层以及营销管理人员,能够为你们的营销思路带来启发。
九枝兰:对于不同的人而言,DMP可能具有不同的内涵,人们对DMP可能存在种种误解。能否告诉我们,按照您的理解,DMP到底是什么?
所以,一般而言,DMP有三层含义:
第一层,DMP不是管所有数据的,而是管理digitalmarketing或digitaladvertising的DMP。
第三层,光有数据还不够,不能用这些数据等于零。因此更重要的,DMP在收集了如上数据之后,能够直接地、实时地应用于营销,帮助营销取得直接的效果。此外,应用这些数据还包括对营销对象的深刻洞察,从而获得更好的营销策略。
九枝兰:DMP是近几年才出现的新事物吗?它是如何诞生和发展的?
这也由过去的CRM研究和管理已经转化的顾客转变成即使还不是顾客也能认识和管理他。只要数据足够多,获取数据的渠道足够广,理论上我们完全可以了解互联网上的每一个人。所以我觉得DMP的概念虽然不一定与CRM在技术上有直接的关联性,但是在营销理论上他们确实有一定的继承关系,思路是一致的。只不过CRM是转化为客户后才能进行,而DMP是通过大数据分析直接去找目标用户,这个是DMP的第一个渊源。
九枝兰:数据不仅是营销的核心,更是DMP的核心。那DMP需要获取哪些数据以及如何获取呢
宋星:既然要使用DMP,必须要打通数据才能用。理论上DMP应尽可能了解用户在互联网上的所有信息数据。比如能够了解到你是一个女士,你喜欢服装、化妆品、连环画等。这些东西理论上我们都能通过DMP识别出来。
而怎么样获得这些数据是DMP非常重要的环节。现在DMP的厂商非常多,每一家都宣称自己有各种各样的数据。这里面一定要明晰几个概念:
第三个是数据的时效性。所有的东西都有保质期,而数据如果过了保质期也会有一定的问题。因此当所有人都在说数据的时候,好像听起来都是一样的数据,但实际上此数据非彼数据。可能你说你有腾讯数据,我说我也有腾讯数据,但我们拥有的数据可能完全不一样,数据本身所包含的东西,它的适用范围,和它的时效性等都不一样。所以这点是很容易在这个行业里面混淆视听的一个概念。
我们接下来看看数据的类型。数据一般来讲有3种类型,即第一方数据第二方数据和第三方数据。
图:以第二方数据为基础的DMP
如果在营销的过程当中九枝兰说数据不够,能不能再用一些腾讯的数据。于是九枝兰又找来一些腾讯数据,这时候这个数据对于可口可乐来说就是第三方数据。
一般来说,第一方和第二方的数据是比较好的,尤其是第一方数据,因为这些数据是你自己的,你对数据拥有充分权限,而且数据的适用范围很广,时效性也不错。但是它有一个问题就是第一方数据的量一般来说比较少,一般是你知道顾客是谁之后才会得到。第二方数据理论上和第一方数据差不多,相对而言质量也比较好,实效性较强。第二方数据和第一方数据都存在一个问题,就是虽然第二方数据比第一方数据广得多,但数据本身的范围还是比较窄,源头都是甲方“自己人”的数据。因此,第一方数据和第二方数据无法很全面的描述一个人,如果这个人的行为在甲方和它的合作伙伴的监测范围之外,那么第一方数据和第二方数据就无能为力了。但对一个人的描述必然需要是全面的,我光知道他跟可口可乐“不得不说的故事”是不足以帮助到我们实现针对性的营销的。比如,我们不知道这个人除了访问了可口可乐网站,实际上他还特别在意减轻体重,经常浏览各种健身和保健内容等等。如果我们能知道后者,我们或许就明白推荐给他“健怡”更合适。为了实现这样的对受众的更全面的了解,这个时候我们还必须求助于第三方数据。
第三方数据在中国分成几个大类:
第一大类,大垄断平台生态圈子的数据,就是BAT的数据——百度阿里巴巴腾讯。
第二大类,运营商数据,运营商有很多底层的数据。
第三大类,很多垂直领域的平台,比如说宝宝树,易车网等。
一般我们会认为BAT三家的数据是各具特点的,而且质量是很高的。比如说百度是搜索数据,搜索数据具有高度时效性,是人的意图的最直接反映。阿里巴巴是消费意图的数据。腾讯是非常好的人和社会属性的数据,这就是BAT的数据。
一般DMP提供商都会宣称自己有BAT的数据表示自己有多么“牛”。不过有个通常被大家忽略的点,就是数据适用范围的问题。BAT的数据虽然质量很好,但是适用范围有限。B也好A也好T也好,谁都不愿意把自己的数据拿到自己生态圈之外使用。举个例子,比如说要拿着腾讯的数据去淘宝,那么腾讯肯定是不乐意的。所以BAT的数据现在原则上肯定只是用于自己的生态圈。
第二类的数据就是运营商的数据。运营商的数据有一个好处就是它是底层,所以理论上能看到的数据比BAT要多。所以运营商的数据是非常好的数据。不过运营商数据存在几个无法克服的问题。第一个,运营商的数据可以获得,但是前提是运营商愿意跟你合作。因为运营商身份的关系,这个事情不一定是纯商务关系(不像跟BAT的合作,基本上是利益牵手)。而且运营商最近遇到了流量劫持等争议性问题,所以在选择数据合作伙伴的时候很谨慎。
运营商数据的第二个问题,是运营商很多是“军阀割据”的。你要搞全国数据,你得跟他们的每一个“地方军阀”去谈。这个工作我估计中国没几个人能全部搞定。
运营商数据的第三个问题,是越来越多的网站、APP采用了加密手段。所以过去互联网对运营商基本上可以算作透明世界,现在也有不少数据看不到了。比如,运营商过去是能看到百度用户的搜索数据的,百度说,这风险太大了吧,于是把searchqueries都加密了,然后运营商也就看不见了。
虽然有这三方面的问题,运营商仍然是比较好的数据合作方。他们姿态上比BAT开放的多,运营商逐步管道化和边缘化,所以他们也相对乐意在数据上找到一些新的增长点。
九枝兰:第三方数据该如何购买和获得?
九枝兰:怎么判断DMP数据的时效性?
宋星:这涉及到两个问题。一个是数据本身的时效性,另外一个是对时效性的判断。第一个问题,时效性里性别的实效性是最差的,一般而言它不会改变。兴趣的数据时效性也比较短。行为的实效性就更短,昨天的行为和今天的行为肯定不一样了。实效性的判别涉及到第三方数据的DMP里面怎样判断它的质量。这个是一个比较复杂的话题,到今天为止也没有得到很好的解决。业界判断第三方数据DMP的质量是否足够好,比较传统的是用panel方法。但是这种方法存在很大缺陷。
九枝兰:什么是pane判定法?
比如说我想看腾讯的数据是否准确,我从数据池里抽取一万或者两万个数据做人肉调查,得到他们性别、年龄等数据,然后和腾讯给我的这一亿数据进行对比,如果二者符合的话就说明这种方法确实可靠。这是目前市面上最常用的方法,但不建议使用。原因在于首先样本量存在偏差:你的样本量相对总数据池来说太少,真实可信的数据能有几万或者十几万就已经很不错了。面临的第二个问题是通过样本量的数据规模去验证DMP的数据规模不科学,因为你要用10万的样本去验证上亿的数据规模,是千万级的差异,这使得panel的数据可能还不如DMP的数据准确。
第三种方法能够解决第一种方法panel所带来的问题:跟BAT合作,跟运营商合作,让BAT或者运营商来评估数据大概的质量情况。因为我们信任BAT或者运营商的数据质量还是可靠的,而且以他们的数据作为panel也能够解决panel内数据量过少的问题。不过我们需要和BAT有很好的合作关系,这是第三种方法。往往我们认为BAT和运营商只要数据抓取得当、技术合适,那么他们作为尺子去衡量其他数据还是靠谱的。
九枝兰:DMP的理念易于接受,但实践却困难的多。那么你建议企业主如何应用DMP
宋星:企业应用DMP目前有几种方法:
第一种方法,企业完全不做DMP,而是拿着服务商的直接用。
这是企业最具有代表性的两种方法,各有需求。
所有的企业都相信自己的数据是很有价值的,但是都没有很好的组织与利用。当然,如果自己建DMP的话,会有很多的挑战。
第一个挑战是建DMP平台需要多大的投入?
第二个挑战是数据哪里来?
第三个挑战是数据怎么用?
这是三个关键问题。
其次,数据从哪里来,当然第一方数据第二方数据企业是有的,只是需要一个DMP把它们整合在一起。如果不做DMP,我没有机会去整合一二三方数据,做了DMP,数据量非常的大,技术、成本就面临很大的挑战。
九枝兰:哪些行业和哪些企业适合自建DMP
第二个是对自己数据的安全性要求比较高,自己建DMP可以解决这个问题。
第三个是对客户人群的细分是有要求的,比如说像汽车行业、母婴行业、奢侈品行业,并不是所有的人都有购买这些产品的需求,营销必须对人有针对性,这种企业对DMP需求高,而且最好是自建DMP平台。这几种情况下都可以考虑去建自己的DMP平台。不过自建DMP,对自己的IT部门是有很高的要求的,我相信并不是每个有自建DMP需求的企业主都能够真正的靠自己的员工去建设一个DMP。如果没有这样的自信和实力,那么不妨利用软件外包的方式,让第三方开发公司来承建。
九枝兰:企业通过自建二元化的DMP会获得怎样的好处
九枝兰:一个企业从认识DMP到成功应用DMP是一个或顺利或曲折的过程,那么,哪些关键因素会影响到企业DMP应用的成败?
宋星:首先是需要管理层自上而下的推进。其次是营销思路的改变带来营销策略的改变,进而影响企业营销部门的工作方式。过去的方式是粗放式,现在是要往精细化的方向转变。思想观念变了之后操作方式、执行方法也就会有很大的改变。过去可能更多的是去定义媒体是什么样,现在会更多的专注在“人”上。营销是从媒体策略转变成了人群策略。技术改变影响了思想及策略的改变,进而影响了执行的改变。
九枝兰:对于不打算自建DMP的企业,如果要选择一个靠谱的服务商,应该注意哪些事项?
宋星:现在真正能做到这个的服务商还不是很多。而且风险很大,如果它一旦关闭了第三方数据,企业对数据将一无所有。所以还是建议大家尽量去建自己的DMP。
但如果真的要选择DMP供应商,我有几点建议给大家:
第二点就是选择有较长生命周期的DMP服务商,也就是说你需要选一个靠谱的、具有发展前景的DMP品牌。业界有DMP服务商服务了没多久就关门的负面案例。系统停了是小事,数据没了就麻烦了。
第三点就是判断它是不是有好的第三方数据,而不是宣称自己有BAT的数据,你甚至可以要求它给你看一些数据片断证明一下它的实力。
第四点,DMP是一个系统工程,是需要服务的。因为涉及到数据,数据本身就有专业性,构建数据模型,数据需要怎么使用,需要给一些方案。而且刚刚使用数据系统,初期是需要培训的,后期则需要有持续的咨询。不要仅仅以为DMP就是一个软件系统,安装了就能用,绝对不是这样。
九枝兰:企业主或者CMO需要对DMP有怎样的了解?
对DMP做到未雨绸缪,很多东西你提前开始准备,在未来会派上大用场。
九枝兰:DMP未来会变成什么样子?
宋星:DMP在中国是一个比较新的概念,原因在于数据整合国内做的不太好。我相信DMP未来会有几个趋势的发展:
第一,在数据源上,未来DMP的数据源会比现在更多,但是每一种数据源的数据范围可能会变得更小。虽然让BAT和运营商实现自由交换难度有点大,但是各个细分领域进行数据交换的可能性是非常多的。
第二,未来可能会从第三方DMP转向公有DMP,数据直接实现自由交换,这个可能是国内的一个方向。但是前提在于我们对于数据的隐私有更明确的立法出台,避免灰色地带。这是我对公有的的第三方DMP的一个看法。
第三,对于企业私有的DMP,可能会走向一个更加灵活的部署,会有一些模块化的定制化的工具出现。结构可能不会有太大的变化,但是使用会更加的方便。从而也意味着DMP会成为未来企业的标配。