激光雷达由激光发射器、光接收机、转盘和信息处理系统组成。激光将电脉冲转换为光脉冲,光接收器将从目标反射的光脉冲转换为电脉冲,发送到显视器。车载激光雷达测距和物体识别的原理如图2.3所示。
图2.3车载激光雷达测距原理
2.2激光雷达的功能
图2.4百度自动驾驶汽车定位方法
这种定位方法的缺点是激光雷达地图或先验激光雷达地图必须提前制作,如果激光雷达地图不存在(对于人口稀少的地区、广阔的郊区和农村地区),自动驾驶汽车将无法执行厘米级定位,只能达到传统GPS3米的定位精度。
车载激光雷达的第二个功能是利用摄像头数据进行目标分类识别和轨迹跟踪。道路的细节,如车道、路缘石、障碍物、虚拟和真实道路以及人行横道,都是通过两侧朝下的激光雷达获得的,百度、谷歌、丰田和其他自动驾驶汽车都使用激光雷达来获取道路细节。
激光雷达和摄像头在前方中间的数据融合可以提高目标识别的速度和准确性。有两种方法可以使用激光雷达识别目标:
第二种方法是将激光雷达点云转换为具有张量结构(矩阵)的密集图像数据,然后使用FasterRCNN进行识别。后者需要强大的计算资源,处理速度相对较慢,FasterRCNN被公认为图像识别领域的最佳方法。激光雷达的另一个优点是擅长预测和跟踪运动物体的轨迹,这是行为决策的基础,就像人类驾驶员一样,它可以预测行人或其他车辆的下一步运动,并根据该预测做出决策。
激光雷达天生具有轨迹预测能力,Velodyne16线激光雷达可以准确预测四分卫在美国超级碗中投掷球后的运动,使用激光雷达计算和预测轨迹比使用光流方法要快得多,并且计算资源的消耗也低得多。
目前,通过激光雷达检测车道线的方法主要有4种。第一个基于激光雷达回波宽度,第二种是根据激光雷达反射强度信息形成的灰度图像或强度信息与高程信息的组合过滤掉无效信息,第三种是激光雷达SLAM与高精度地图的结合,可以检测车道线并定位车辆。第四种是根据路边的高度信息或物理反射信息检测路边,然后根据距离和路宽计算车道线位置,这种方法不适用于某些边缘与路面高度差小于3厘米的道路。后三种方法至少需要16线激光雷达,前者可以与4线或1线激光雷达配合使用。目前,第二种方法是使用最广泛的方法,该方法的特点是激光雷达应尽可能靠近道路或面向道路,以获得更多的反射强度信息。丰田和谷歌都在汽车的前保险杠上安装了激光雷达,通用汽车在保险杠附近有9毫米波雷达和1个摄像头,因此由于安装空间可能不足,激光雷达只能放置在屋顶上。
2.3激光雷达的优缺点分析
(1)高分辨率
激光雷达可以获得高分辨率的角度、距离和速度。一般来说,角分辨率不小于0.1mrad,也就是说,它可以区分两个距离为0.3m的目标,距离为3km(这对于微波雷达来说是不可能的)。同时,还可以跟踪多个目标,距离分辨率可以达到0.1m,速度分辨率可以达到10m/s以内,距离和速度的高分辨率意味着可以使用距离-多普勒成像技术获得目标的清晰图像,即4D点云成像。
(2)隐蔽性好,抗主动干扰能力强
(3)不错的低空探测性能
由于各种地面物体回波的影响,微波雷达在低空存在一定的盲区(无法探测的区域)。对于激光雷达来说,只有目标会引起反射,并且没有地面回波的影响,因此它可以在零高度工作。其低空探测性能远优于微波雷达,通常可以用激光作为补盲探测。
(4)体积小,重量轻
激光雷达的缺点如下:
首先,它受天气和大气的影响很大。一般来说,激光的衰减小,在晴朗的天气下传播距离长。但在大雨、下雪、烟雾等恶劣天气下,衰减急剧增加,传播距离受到明显影响。另外,大气环流还会引起激光束畸变和抖动,直接影响激光雷达的测量精度。
其次,由于激光雷达的波束非常窄,搜索目标可能很困难,直接影响非合作目标的拦截概率和探测效率,它只能在小范围内搜索和捕获目标。因此,激光雷达很少用于独立搜索和检测。
最后,就是激光雷达价格很昂贵,会增加汽车系统的成本。但随着技术的发展,激光雷达的成本可能会降低,我们拭目以待!
2.4激光雷达的商业化
激光雷达的低廉价格将是其大规模商业应用的基础和核心,目前,激光雷达的广泛使用还有很长的路要走。常用车载激光雷达的性能指标和价格如图2.5所示。
图2.5车载激光雷达的性能指标及价格
3、毫米波雷达
3.1毫米波雷达的技术原理
车载毫米波雷达的工作原理如下:雷达通过天线向外发射毫米波,接收目标反射信号,快速准确地获取车辆周围的物理环境信息(如车辆与物体之间的相对距离、相对速度、角度、移动方向等)。然后根据检测到的目标信息进行目标跟踪识别分类,并与人体动态信息进行数据融合。最后,通过电子控制单元进行智能处理。经过合理决策后,可以通过声、光、触等方式通知或警告驾驶员,或及时主动干预,从而保证驾驶的安全性和舒适性,降低事故发生概率。这个过程如图3.1所示。
图3.1车载毫米波雷达工作过程
根据辐射电磁波的区别,毫米波雷达可分为两大类:脉冲系统雷达和连续波系统雷达。然后连续波可以分为FSK(频移键控),PSK(相移键控),CW(恒频连续波),FMCW(调频连续波)和其他模式,特点和缺点如图3.2所示。
图3.2两种毫米波雷达的特点
图3.3FMCW雷达系统的组成和工作原理
3.2毫米波雷达的优势
毫米波雷达的优点如下:
3.3毫米波雷达汽车应用
目前各国分配给车载毫米波雷达的频段如图3.4所示,主要集中在24GHz区域(21.65-26.65GHz)和77GHz区域(76–81GHz),一些国家(如日本)使用60GHz频段。汽车毫米波雷达最常见的工作频率约为24GHz、77GHz和79GHz。与24GHz器件相比,77GHz器件具有许多优点,如电子元件和天线尺寸更小,单芯片集成结构更容易实现,速度分辨率更高等。未来,车载毫米波雷达的频段将收敛到77GHz区域(76-81GHz)。
图3.4车载毫米波雷达频段分配
当毫米波雷达安装在汽车上时,可以测量雷达与被测物体之间的距离、角度和相对速度。目前,毫米波雷达主要应用于高端机型,并将逐步普及到低端机型。根据安装位置,车载毫米波雷达可分为后向雷达和前向雷达。通常,每辆车都配备两个后向雷达,分别放置在车辆的左右尾部;前方雷达通常安装在车辆前保险杠的中间,后向雷达和前向雷达的功能如表3.1所示。
表3.1前向和后向雷达功能对比
毫米波雷达可以执行高级驾驶辅助系统(ADAS)的功能,例如自适应巡航控制、前方碰撞警告、盲点检测、停车辅助和变道辅助。24GHz雷达系统主要执行短程侦察(SRR),而77GHz系统主要执行远程侦察(LRR)。SRR和LRR的组合应用如图3.5所示。
图3.5SRR和LRR的联合应用
3.4毫米波雷达的行业结构、主流产品及发展趋势
车载毫米波雷达的国内外产业结构如图3.6所示。
图3.6毫米波雷达产业结构
目前,中国市场高端汽车用毫米波雷达传感器全部进口,市场被美国、日本、德国企业垄断,价格高,因此迫切需要自主制造。汽车毫米波雷达分为短程、中程和长距离,其对应的价格也有低、中、高,市场上主流的汽车毫米波雷达如图3.7所示。
图3.7主流汽车毫米波雷达概述
a)博世中远程雷达,b)大陆短程和远程雷达,c)德尔福中程雷达
3.4MIMO雷达虚拟阵列和2D成像
MIMO雷达虚拟阵列的典型应用是二维雷达成像,二维雷达成像的距离分辨率主要取决于雷达信号的带宽,方位分辨率主要取决于天线的波束宽度。为了提高成像的距离分辨率,一种相对简单的方法是增加雷达信号的带宽;为了提高雷达信号的方位分辨率,不可避免地要增加天线或阵列的孔径,这在实践中是困难的,并且受到许多因素的限制。目前广泛使用的解决方案是:利用合成孔径技术在不增加天线物理尺寸的情况下获得大孔径阵列。与合成孔径的思想不同,MIMO雷达利用多个发射器和多个接收器的天线结构,形成虚拟的大孔径阵列,以获得高方位角分辨率,这种虚拟阵列的形成是实时的,可以避免传统ISAR成像中的运动补偿问题,故MIMO雷达在成像应用中具有其独特的优势。
图3.9四个TIAWR1243雷达(3T4R)
图3.10显示了德州仪器的四个AWR1243级联雷达的参数,远程分辨率大大提高,在40m处可以实现1°的方位角分辨率,即4.5cm的分辨率和9cm左右的物体分辨率。
图3.10四个AWR1243级联雷达参数
使用45°FOV的百万像素相机,方位角分辨率在40m处仅为约20像素,无法区分行人和骑自行车的人。MIMO具有非常宽的视场,像德州仪器那样的四级联雷达的视场高达192°(摄像机的80°视场被认为是广角),因此在边缘可能存在广角畸变。
图3.11显示了德州仪器测试的多级联雷达(MIMO)的FFT输出图。可以看出,通道越多,分辨率越高。
图3.11德州仪器多级联雷达FFT结果
4、超声波雷达
5、自动驾驶汽车雷达系统配置示例
5.1通用巡航自动驾驶汽车
GMCruise自动驾驶汽车雷达系统的配置如图5.1所示,具有5个激光雷达和21毫米波雷达,还有16个摄像头。这五个激光雷达是VelodyneVLP1616线激光雷达,2018年1月初,Velodyne将VLP16的价格从7999美元下调至3999美元。在21个毫米波雷达中,12个79GHz雷达由日本阿尔卑斯山公司提供,两个前向和两个后向远程雷达可能由德国公司提供,型号为ARS408。博世公司提供了五个高分辨率(通用汽车称为铰接式)毫米波雷达,它们主要安装在汽车的两侧和前部,带宽是传统77GHz雷达的8倍,因此分辨率可达4cm。
12个79GHz毫米波雷达以级联模式工作,足以生成清晰的360°环视全景图像,同时跟踪数千个目标。12个79GHz毫米波雷达构成一个冗余系统,毫米波雷达处理复杂环境的能力最强,最适合冗余系统,在激光雷达和摄像头故障的情况下,它们仍然可以确保车辆的安全驾驶和停放。
5.2谷歌自动驾驶汽车
谷歌无人驾驶汽车是谷歌X实验室目前正在开发的全自动驾驶汽车,它不需要驾驶员启动、行驶或停止,目前正在测试中,已经行驶了480,000公里。谷歌已经使用了七辆汽车进行测试,其中包括六辆丰田普锐斯和一辆奥迪TT。他们在加利福尼亚州的几条道路上进行了测试,包括旧金山湾区的伦巴底街。这些车辆使用摄像头和雷达来感知道路环境和交通状况,并使用详细的地图进行导航,实际测试场景如图5.2所示。
5.3Waymo自动驾驶汽车
自2017年10月中旬以来,谷歌的Waymo自动驾驶汽车在亚利桑那州开始了公开路试。测试场景和传感器配置如图5.6所示。
Waymo自动驾驶汽车的传感器配置如下:
激光雷达系统:包括三种激光雷达:可提供360°全景视野的短距离激光雷达、高清中距离激光雷达和可穿透近三个足球场的新一代远程激光雷达,该系统支持日夜正常工作。
毫米波雷达系统:使用多个波长(24G和77G)来检测物体和运动,雷达波可以绕过雨滴等物体,不受雨天、雪天、雾天和夜间影响。Waymo的雷达系统具有360°全景视野,因此可以测量车辆前方、后方和两侧道路参与者的速度。
视觉(摄像头)系统:视觉系统包括设计成像人类一样看周围世界的摄像头,但它具有360°同步视野,而人类驾驶员只能看到120°的视野。由于高清视觉系统可以检测颜色,因此可以帮助系统识别交通信号灯、施工区域、校车和救护车的频闪灯。Waymo的视觉系统由许多高清摄像头组成,旨在在白天和弱光条件下看到远处的物体。
依靠传感器和软件的配合,Waymo可以感知周围的世界,它可以识别车辆、行人、自行车、障碍物,还可以区分交通信号灯、临时停车标志等的颜色。Waymo自动驾驶汽车看到的世界如图5.7所示。
长沙市望城经济技术开发区航空路6号手机智能终端产业园2号厂房3层(0731-88081133)