一文看懂计算机视觉CV(基本原理+2大挑战+8大任务+4个应用)计算机视觉为什么重要?人的大脑皮层,有差不多70%都是

计算机视觉(ComputerVision)是人工智能领域的一个重要分支。它的目的是:看懂图片里的内容。

本文将介绍计算机视觉的基本概念、实现原理、8个任务和4个生活中常见的应用场景。

人的大脑皮层,有差不多70%都是在处理视觉信息。是人类获取信息最主要的渠道,没有之一。

在网络世界,照片和视频(图像的集合)也正在发生爆炸式的增长!

下图是网络上新增数据的占比趋势图。灰色是结构化数据,蓝色是非结构化数据(大部分都是图像和视频)。可以很明显的发现,图片和视频正在以指数级的速度在增长。

而在计算机视觉出现之前,图像对于计算机来说是黑盒的状态。

一张图片对于机器只是一个文件。机器并不知道图片里的内容到底是什么,只知道这张图片是什么尺寸,多少MB,什么格式的。

如果计算机、人工智能想要在现实世界发挥重要作用,就必须看懂图片!这就是计算机视觉要解决的问题。

计算机视觉是人工智能的一个重要分支,它要解决的问题就是:看懂图像里的内容。

比如:

目前主流的基于深度学习的机器视觉方法,其原理跟人类大脑工作的原理比较相似。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

机器的方法也是类似:构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类。

对于人类来说看懂图片是一件很简单的事情,但是对于机器来说这是一个非常难的事情,说2个典型的难点:

特征难以提取

同一只猫在不同的角度,不同的光线,不同的动作下。像素差异是非常大的。就算是同一张照片,旋转90度后,其像素差异也非常大!

所以图片里的内容相似甚至相同,但是在像素层面,其变化会非常大。这对于特征提取是一大挑战。

需要计算的数据量巨大

手机上随便拍一张照片就是1000*2000像素的。每个像素RGB3个参数,一共有1000X2000X3=6,000,000。随便一张照片就要处理600万个参数,再算算现在越来越流行的4K视频。就知道这个计算量级有多恐怖了。

CNN解决了上面的两大难题

CNN属于深度学习的范畴,它很好的解决了上面所说的2大难点:

图像分类是计算机视觉中重要的基础问题。后面提到的其他任务也是以它为基础的。

举几个典型的例子:人脸识别、图片鉴黄、相册根据人物自动分类等。

目标检测任务的目标是给定一张图像或是一个视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。

它将整个图像分成像素组,然后对像素组进行标记和分类。语义分割试图在语义上理解图像中每个像素是什么(人、车、狗、树...)。

如下图,除了识别人、道路、汽车、树木等之外,我们还必须确定每个物体的边界。

除了语义分割之外,实例分割将不同类型的实例进行分类,比如用5种不同颜色来标记5辆汽车。我们会看到多个重叠物体和不同背景的复杂景象,我们不仅需要将这些不同的对象进行分类,而且还要确定对象的边界、差异和彼此之间的关系!

与图像分类不同的是,分类的对象不再是静止的图像,而是一个由多帧图像构成的、包含语音数据、包含运动信息等的视频对象,因此理解视频需要获得更多的上下文信息,不仅要理解每帧图像是什么、包含什么,还需要结合不同帧,知道上下文的关联信息。

体关键点检测,通过人体关键节点的组合和追踪来识别人的运动和行为,对于描述人体姿态,预测人体行为至关重要。

在Xbox中就有利用到这个技术。

很多照片中都有一些文字信息,这对理解图像有重要的作用。

场景文字识别是在图像背景复杂、分辨率低下、字体多样、分布随意等情况下,将图像信息转化为文字序列的过程。

停车场、收费站的车牌识别就是典型的应用场景。

目标跟踪,是指在特定场景跟踪某一个或多个特定感兴趣对象的过程。传统的应用就是视频和真实世界的交互,在检测到初始对象之后进行观察。

无人驾驶里就会用到这个技术。

计算机视觉的应用场景非常广泛,下面列举几个生活中常见的应用场景。

这里需要说明一下,条形码和二维码的扫描不算是计算机视觉。

THE END
1.图像识别(ImageRecognition)的基本概念图像识别是计算机视觉领域的一个重要分支,它旨在识别图像中的对象、场景和特征。图像识别技术广泛应用于各个领域,如自动驾驶、医疗诊断、安全监控等。 在过去的几十年里,图像识别技术发展迅速,从基于手工特征提取的方法发展到深度学习方法。深度学习方法尤其在近年来取得了显著的进展,尤其是卷积神经网络(Convolutional Neurahttps://blog.csdn.net/universsky2015/article/details/136013603
2.什么是图像识别?图像识别的应用种类有哪些?简述:什么是图像识别?精准识别超过十万种物体和场景,包含10余项高精度的识图能力并提供相应的API服务,充分满足各类开发者和企业用户的应用需求。 图像识别的应用场景种类有哪些?1、通用物体和场景识别可识别超 什么是图像识别? 精准识别超过十万种物体和场景,包含10余项高精度的识图能力并提供相应的API服务,充分满足各https://www.tuidc.com/helpinfo/35905.html
3.图像识别的工作原理是什么?商业上如何使用它?51CTO博客图像识别的工作原理是什么?商业上如何使用它? 图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏等不同领域的公司正在迅速采用图像识别。根据MarketsandMarketshttps://blog.51cto.com/u_13677412/5068369
4.什么是图像识别,图像识别的知识介绍图像识别是指利用计算机视觉技术对图像进行分析、识别和理解的过程。这种技术可以帮助计算机“看懂”图像,从而实现自动化处理、智能化判断等功能。随着深度学习等技术的不断发展,图像识别已经逐渐成为人工智能领域中的一个重要研究方向。 1.图像识别是什么 图像识别是一种利用计算机软件对数字图像进行分析、识别和理解的https://www.eefocus.com/baike/1545801.html
5.ocr图片识别技术是什么?OCR的作用有哪些?可以放进口袋的扫描大师 ocr图片识别技术是什么?OCR的作用有哪些? ocr图片识别技术存在于很多地方,例如的银行的人脸识别系统,二维码识别系统。福昕全能王也运用了ocr图片识别技术进行工作,大家可以使用福昕全能王进行身份证的识别。 ocr图片识别技术是什么? ocr图像识别,是指利用计算机对图像进行处理、分析和理解,以识别https://www.foxitsoftware.cn/scanner/jiaocheng/691.html
6.图像识别与目标检测的区别是什么?人工智能通常情况下,图像识别的任务是对整个图像进行分析,输出图像包含的物体类别。例如,给定一张包含猫的图像,图像识别的任务是判断这张图像中是一只猫。 目标检测:目标检测是指在图像中找到并标记出物体的位置,同时识别物体所属的类别。目标检测不仅可以告诉我们图像中有什么物体,还能告诉我们这些物体在图像中的位置信息。https://developer.huawei.com/home/forum/hwc/thread-0274147063516124022-1-1.html
7.图像识别是什么意思应该怎么翻译科学技术名词规范用词图像识别 英文翻译image recognition 名词定义利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。 所属学科测绘学>摄影测量与遥感学 名词审定测绘学名词审定委员会 见载刊物《测绘学名词(第三版)》 科学出版社 公布时间2010年 https://mkeji.911cha.com/Z3U1bw==.html
8.什么是无人机图像识别技术什么是无人机图像识别技术 随着科技的不断发展,无人机巡检已经成为了现代工业领域中一种常见的作业方式。无人机利用高空俯瞰的优势,可以快速准确地对设施进行巡视,提高了安全性和作业效率。然而,传统的无人机巡检仍然面临着一些挑战,例如巡检范围广、时间长、人工处理图像等问题。因此,图像识别技术的应用成为了解决https://www.wlzni.com/h-nd-896.html
9.计算机识别图像的原理是什么图像是由很多具备色彩种类、亮度等级等信息的基本像素点所构成的。计算机初始状态只能识别像素点上的基本信息,这个和生物的视觉是一样的,生物之所以可以分辨物体是由于生物神经系统对原始图像处理后的结果。而计算https://edu.iask.sina.com.cn/jy/37izahSNF4V.html
10.图像识别技术(1)什么是图像识别? 图像识别,又称为计算机视觉,是指利用计算机和人工智能技术对图像进行分析和理解,以自动识别和分类图像中的对象、场景、模式等信息。它是计算机视觉领域的一个重要研究方向。 (2)图像识别的发展过程 图像识别的发展过程可以追溯到计算机视觉的早期研究。以下是图像识别发展的主要里程碑和阶段: https://nic.hnuu.edu.cn/10043/2023/0029474.html
11.什么是计算机视觉?IBM计算机视觉需要大量数据。 它一遍又一遍地运行数据分析,直到能够辨别差异并最终识别图像为止。 例如,要训练一台计算机识别汽车轮胎,计算机视觉需要为其输入大量的轮胎图像和轮胎相关数据,供其学习轮胎差异和识别轮胎,尤其是没有缺陷的轮胎。 这个过程会用到两种关键技术:一种是机器学习,叫做深度学习,另一种是卷积神经网络https://www.ibm.com/cn-zh/topics/computer-vision