一种车标识别方法和系统与流程

本发明涉及图像识别领域,尤其涉及车标图像识别领域,具体涉及一种基于修正HU不变矩和SIFT特征的混合算法的车标识别方法和系统。

背景技术:

在对车标进行识别时,首先要对车标图像进行特征提取。通常的车标特征提取方法有修正的Hu不变矩特征法和基于SIFT算法的特征提取法。

一、修正的Hu不变矩特征

修正的Hu不变矩是基于Hu不变矩发展而来的,Hu不变矩是基于代数不变量的矩不变量,通过对几何矩的非线性组合,导出的一组对于图像平移、旋转和尺度变化不变的矩。不变矩是图像的一种统计特征,它利用图像灰度分布的各阶矩来描述图像灰度的分布特征[1]。

f(x,y)是数字图像,它的(p+q)阶矩定义为:

它的(p+q)阶中心矩定义为:

其中,表示图像的中心,定义如下:

标准化中心矩的表达式为:

其中,

对平移、缩放、镜像和旋转都不敏感的7个二维Hu不变矩为:

而修正Hu不变矩,则需要在上面计算过程中加入中间系数,对中间变量进行调整,再获得7个Hu不变矩,包含修正系数xs和ys的新的中心矩定义为

λpq=Σx=1MΣy=1N(x-x‾+xs)p(y-y‾+ys)qf(x,y)dxdy---(1-12)]]>

其中,f是一个非负的连续图像函数;和分别是在x和y方向上的图像的重心坐标;修正系数xs和ys由下面的表达式获得:

xs=m20m00,ys=m02m00---(1-13)]]>

在实际应用中,为了方便整体的比较和降低分类的复杂性,采用取对数的方法对不变矩数据进行压缩处理,即:

二、基于SIFT算法的特征提取

SIFT即尺度不变特征转换(英文全文:Scale-invariantfeaturetransform),是一种用于描述图像邻域的局部算子,可在图像中检测出图像的极值点。SIFT算子由DavidLowe在1999年提出,在2004年加以完善。该算法是一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的特征匹配算法[2]。一般来说,结合图1来说明,SIFT算法可以分为以下四步:

S201:尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。

S202:关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。

S203:方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。

S204:关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。在原方法中,关键点附近的领域被划分为4*4个子区域,每个子区域中计算8个方向的梯度,共有4*4*8=128维的特征分量。

现有以上两种特征提取方法中,存在以下缺点:

修正Hu不变矩描述的是车标图像的全局特征,这些矩对平移、缩放、镜像和旋转都不敏感,但由于实际拍摄到的车标图像可能会出现光照、污损、遮挡等情形,修正Hu不变矩特征方法会受这些局部特征的变化影响较大,最终导致识别存在一定的不准确率;而SIFT特征提取算法描述的则是图像的局部特征,但SIFT算子有时提取的特征点偏少,有时则过多,不同的车标图像,提取出的SIFT特征点个数往往是不同的。由于特征点个数不等,就为利用特征点的描述符进行识别带来了困难。

说明书全文参考文献:

[1]PalaniappanR,RaveendranP,SigoruOmata.ImprovedMomentsInvariantforInvariantImageRepresentationInvariantsforPatternRecognitionandClassification[M].Singapore:WorldScientificPublishingCo,2000:167

—185.

[2]DavidG.Lowe.DistinctiveImageFeaturesfromScale-InvariantKeypoints[J].InternationalJournalofComputerVision,2004,60(2):91-110

[3]孙晔,吴锐文.基于卷积神经网络的车标识别[J].现代计算机,2015,4:84-87

技术实现要素:

有鉴于此,本发明提供一种车标识别方法和系统。

本发明采用如下技术方案:

本发明的车标识别方法,它包括如下步骤:

S21:检测车标图像;

S22:从车标图像中提取混合有SITF特征点和HU不变矩特征的一维数组。

优选的,所述一维数组结构如下:其中为HU不变矩;n≥5,s1,s2……sn为SITF特征点,每个特征点格式为x,y分别为特征点的横坐标,纵坐标,f1,f2……f128为SITF特征点的128维特征分量。

优选的,n=5时,所述SITF特征点的提取包括如下步骤:

S2211:列扫描提取车标图像的第一特征点,和最左,最右特征点;

S2212:行扫描提取车标图像的第一特征点,和最上,最下特征点;

S2213:计算行边界特征点和列边界特征点;

S2214:计算行和列边界特征点确定的图像区域的中心点;

S2215:计算S2214中的中心点与车标图像中心点之间的欧式距离,将欧式距离最短的特征点作为第5特征点;

S2216:将5个特征点按照从上到下,从左到右的顺序排序后放入候选集,得到SITF特征点。

优选的,所述步骤S2213中行边界特征点和列边界特征点的筛选方法为:

候选集中的特征点如超过4个时,对于同一行存在左右两个特征点的情形,考察该点是否同时为左边界或右边界上的特征点,则:

a)当两个点都是边界的情形,两个点都给予保留;

b)当一个点为左边界或右边界时,舍弃另外一个点;

c)当两个点都不是左右边界时,则计算候选集中左右边界点横坐标的中间值,保留横坐标距离该中间值近的点,舍弃距离其远的点;如果两个点距离该中间值的距离是一样的,则选取左边的特征点;

候选集中的特征点如仍超过4个时,对于同一列存在上下两个特征点的情形,考察该点是否同时为上边界或下边界上的特征点:

b)当一个点为上边界或下边界时,舍弃另外一个点;

c)当两个点都不是上下边界时,则计算候选集中上下边界点从坐标的中间值,保留纵坐标距离该中间值近的点,舍弃距离其远的点;如果两个点距离该中间值的距离是一样的,则选取上边的特征点。

优选的,所述车标识别方法还包括步骤:

S23:识别车标图像;将混合有SITF特征点和HU不变矩特征的一维数组输入到训练好的分类器中,经分类器计算后得到识别结果。

优选的,所述分类器为BP人工神经网络;所述混合有SITF特征点和HU不变矩特征的一维数组中的各元素作为BP人工神经网络的输入层节点输入。

本发明的车标识别系统,它包括:SITF特征点筛选模块,HU不变矩筛选模块,混合模块;

SITF特征点筛选模块,用于筛选车标图像特征点并输出给混合模块,所述特征点包括行边界特征点,列边界特征点,以及第5特征点;所述第5特征点为车标图像内到由行边界特征点和列边界特征点确定的图像区域中心点的欧式距离最短的点;

HU不变矩筛选模块,用于筛选车标图像内的7个不变矩特征点并输出给混合模块;

混合模块,将SITF特征点和HU不变矩混合后输入到分类器。

优选的,所述分类器为BP人工神经网络;BP人工神经网络的输入层节点为混合有SITF特征点和HU不变矩特征的一维数组中的各元素。

优选的,所述一维数组结构如下:其中为HU不变矩;n=5,s1,s2……sn为SITF特征点,每个特征点格式为x,y分别为特征点的横坐标,纵坐标,f1,f2……f128为SITF特征点的128维特征分量。

本发明的有益技术效果是:修正Hu不变矩算法和SIFT算法都有其特定的适用性,针对两种方法的局限,本发明提出了一种有效混合两种算法的方法,同时针对SIFT算子提取的特征点个数不稳定的情况,提出了独特的特征点筛选方法,将筛选出的特征点的特征描述子作为识别分类器的一部分节点的输入,本发明的车标分类器采用BP人工神经网络模型。通过混合修正Hu不变矩特征和SIFT特征作为识别分类器的输入特征,达到了使特征向量维数统一,同时兼顾了图像的全局特征和局部特征的目的,使得该算法发明在复杂环境下有较好的适应性。

附图说明

图1SIFT算子描述符的梯度分布图;

图2实施例一中的车标识别方法的流程图;

图3实施例一中的车标识别方法中生成车标识别模型步骤的流程图;

图4实施例一中的车标识别方法中训练分类器步骤的流程图;

图5实施例一中的车标识别方法中识别车标步骤的流程图;

图6实施例一中的车标识别方法中检测车标图像步骤的流程图;

图7实施例一中的车标识别方法中提取车标图像特征步骤的流程图;

图8实施例一中的车标识别方法中提取SITF特征点步骤的流程图;

图9BP人工神经网络结构示意图;

图10实施例一中的将混合特征分类作为BP人工神经网络的输入层节点输入的结构示意图;

图11实施例一中的车标识别系统组成框图。

具体实施方式

实施例一:

如图2至8,本实施例中的车标识别方法,包括如下步骤:

S1:生成车标识别模型。该步骤包括几个步骤:

S11:获取车标图像样本。

车标的检测提取方法有多种,一般是通过在摄像头在各种状态下拍摄到的含有车标的图片中提取。收集完车标图像后,将每张图像样本按车标类别存放到不同的位置。本实施例中的车标类别是指车辆品牌标识,还可以按照其他特点进行分类。

S12:设计分类器。本实施例中的分类器为BP人工神经网络。

BP人工神经网络是一种单向传播的多层前向网络,其结构如图9所示。网络是一种具有三层或三层以上的神经网络,包括输入层、中间层隐层和输出层[3]。BP人工神经网络的每层参数确定方法如下:

1.输入和输出层的节点数

输入层、输出层的神经元节点可以根据需要求解的问题和数量表示方式确定。

2.隐层节点数

隐层的设计隐层的神经元节点数目选择是一个十分复杂的问题,往往需要根据设计者的经验和多次实验来确定,不存在一个最理想的解析式来表示。但也有常用的计算公式可用于计算隐层神经元个数,本实施例采用下式来计算隐层节点数:

其中,m为输出层神经元数,n为输入层神经元数,nh为隐层神经元数。

以13类车标的识别为例,它们分别是:奥迪、本田、别克、大众、丰田、福特、皇冠、马自达、日产、起亚、三菱、现代、雪佛兰。本实施例采用了13位的二进制数字序列作为BP人工神经网络的输出编码。按照前述的车标排列顺序,从1到13分别给各个车标编码,当数字序列的第一位取值为1,其它位取值为0时,表示输出结果为奥迪;当数字序列第二位取值为1,其它位取值为0时,表示输出结果为本田;其它车标编码依此类推。

S13:设定分类器训练结束的条件

本实施例的车标识别方法设定,当迭代次数为用户设定的迭代最大次数或者阈值小于用户设定阈值的负3次方时,训练结束。

S14:训练分类器

程序启动后,将遍历读取各车标存放的文件夹中的图像,提取混合特征,作为分类器输入,该混合特征为BP人工神经网络训练前提取的图像特征;初始化BP人工神经网络的权值(权值为实数常量,用来决定本层神经元输入对下一层输出的贡献率);在每次迭代反馈过程中,调整修正BP人工神经网络的权值,当模型的输出值和期望值的差距小于S13中设定的阈值或迭代次数达到设定次数时,训练结束。

S2:识别车标。该步骤包括如下几个步骤:

S21:检测车标图像。

车标检测方法有多种,可利用车标与车牌相对位置的已知规律,对待测车辆图像进行车标粗定位,提取出车标矩形区域。再根据车标与散热器网的相对位置,采用基于模板匹配和边缘检测的算法对车标进行精定位。定位出车标区域后,将车标图像截取即可进行下一阶段的识别。

S22:提取车标图像特征。

检测出车标后,采用如下方法提取混合特征,将混合特征以一维数组方式存储。

S221:提取SIFT特征点。

通过实验发现,车标样本的SIFT特征点数一般不小于5个,因此本实施例只选取了5个,由于特征点在车标图像中的位置也是一个重要的信息,对于同一类型的车标,只有将近似位置处的特征点的描述符作为分类器的输入特征,才能获得准确的识别结果。而相同车标的不同图像特征点的位置分布是相似的,不同车标的图像特征点的位置存在较大差异。为了让选取的特征点能覆盖车标的较大范围,采用以下方法来选取特征点:

S2211:对于归一化后的图像,按行数分别从上往下扫描,遇到的第一个特征点,即采用其作为分类器输入的特征点,如果同一行中有两个或以上的特征点,则将该行中最左一个点和最右一个点放到特征点候选集中;然后再从下往上扫描,遇到第一个特征点时,同样按照从上往下扫描的方法处理;

S2212:按列数分别从左到右及从右到左扫描,遇到第一个特征点,即采用其作为分类器输入的特征点,如果同一列中有两个或以上的特征点,则将该列中最上面和最下面的一个点放到特征点候选集中;这一步获得的特征点,有可能是与第一步中获得的点相同的,重复的点不需要再放到候选集;

S2213:这时候选集中已具备了图像上下左右四个边界的特征点,个数可能已超过4个,对于超过4个的情形,再按如下操作筛选行和列的边界特征点:

1)对于同一行存在左右两个特征点的情形,考察该点是否同时为左(或右)边界上的特征点,则:

b)当一个点为左(右)边界时,舍弃另外一个点;

2)经过上面的处理后,判断候选集中的特征点是否已降至4个。如超过4个,则继续进行如下处理,对于同一列存在上下两个特征点的情形,考察该点是否同时为上(或下)边界上的特征点:

b)当一个点为上(下)边界时,舍弃另外一个点;

S2214:经过以上3步处理后,候选集中的特征点必定为4个,这些点的坐标限定了图像中的某个区域,计算该区域的中心点,计算其与中心点的欧氏距离,将欧氏距离最近的特征点放进候选集中。这时,候选集就具备5个特征点了。

S2215:将5个特征点按照从上到下,从左到右的位置顺序进行排序存放于候选集中。

S222:提取Hu不变矩特征。

S223:修正Hu不变矩特征和SIFT特征混合计算。

考虑到SIFT的特征点很大程度上与位置有所关联,在拍摄过程中可能会因为拍摄角度,光照等因素导致特征点的偏置或抖动,因此,为提高输入分类器的特征的有效性,在特征点对应的特征向量基础上,为每个特征点增加横坐标和纵坐标两维特征(坐标以归一化的车标图像左上角为原点),以及7个修正Hu不变矩,作为BP人工神经网络的输入特征。对于一幅归一化后的车标图像,提取图像的特征向量后,各分量的排列如下:第一到第七分量为修正Hu不变矩值,接下来依次为第一个特征点的横坐标、纵坐标和SIFT算法提取的128维特征,后面第二到第五个特征点的特征排列同第一个特征点。所得特征向量的维数为7+(128+2)*5=657,将该向量作为BP人工神经网络的输入,用于BP网络的训练与检测。

图10呈现了本发明提出的将Hu不变矩特征和SIFT特征混合的方法。图中的圆圈表示BP人工神经网络的输入层节点,前面1到7个节点输入从车标图像提取的7个Hu不变矩特征值,接下来依次为第1至第7个特征点的横坐标、纵坐标和SIFT算法提取的各特征点的128维特征分量。

S23:识别车标图像。

将提取的车标图像特征输入训练好的分类器中,经分类器计算即可获得识别结果。

如图11,本实施例中的车标识别系统,包括SITF特征点筛选模块,HU不变矩筛选模块,混合模块。

SITF特征点筛选模块,用于筛选车标图像特征点并输出给混合模块,所述特征点包括行边界特征点,列边界特征点,以及第5特征点;所述第5特征点为车标图像内到由行边界特征点和列边界特征点确定的图像区域中心点的欧式距离最短的点。

HU不变矩筛选模块,用于筛选车标图像内的7个不变矩特征点并输出给混合模块。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

THE END
1.看仪表盘识车app排行榜有哪些哪个好用看仪表盘识车app有哪些 看仪表盘识车app推荐看车app软件公交车时间表app看图识别地方软件扫一扫识别手表软件看摩托车软件机车看车软件app列车时刻表软件手机上看车软件免费表盘软件看花识别植物软件看摩托车的app智能手表表盘app看图识地点软件看车网看新车app汽车知识app开车软件免费观看看车软件看车软件app看图识物软件https://m.pianwan.com/s/zj-1006730
2.手绘识别车标的软件:从草图到识别,打造汽车爱好者的梦想工具在汽车文化盛行的时代,越来越多的汽车爱好者希望能够快速准确地识别各类车标。传统的车标识别方式往往依赖于停车场的标识或资料书籍,这给车迷的追求带来了一定的局限性。为了解决这个问题,一款手绘识别车标的软件应运而生,成为了许多车迷的梦想工具。 这一软件的核心功能是将用户的手绘草图与庞大的车标数据库进行匹配。http://xinchuanggame.cn/syzx/100514.html
3.车牌识别软件下载车牌识别软件app大全汽车已经成为当今最普遍的交通工具,在我们生活中扮演者重要的角色,为了更好的管理汽车,今天小编给大家介绍一些车牌识别软件,大家都知道每一辆车都有它的专属车牌,不论是汽车还是电动车,车牌就相当于车辆的身份证,是管理车辆的重要凭证,而这些车牌识别软件,支持快速识别车牌并且记录,可以帮助用户提供更加方便的汽车管理,http://www.downcc.com/k/cpsb
4.拍照识车软件哪个好?拍照识别车型app下载通过先进的图像识别技术,用户可以轻松地拍摄车辆的照片,以获取关于该车型的详细信息,包括品牌、型号、年份等。这款应用不仅能够帮助用户快速了解自己或他人的座驾,还提供了丰富的汽车知识库,让用户能够随时查阅相关信息。此外,它还能用于比较不同车型的特点和价格,是选购新车或是二手车时的理想工具。无论是寻找特定车型https://www.greenxf.com/tag/pzsc.html
5.OpenCV下大众车标定位算法实现资源OpenCVHaar分类器车辆识别模型训练样本和训练结果 浏览:171 4星 · 用户满意度95% 包含车辆正负样本,以及opencv_createsamples.exe、opencv_traincascade.exe以及训练样本结果 基于SIFT算子的车标识别代码及报告 浏览:65 5星 · 资源好评率100% matlab代码,有实验报告,图像视频处理的车标识别软件 https://download.csdn.net/index.php/mobile/source/download/sunpengshine/6732593
6.拍照识车app哪个好?拍照识车价格和车型软件下载拍照识车价格和车型软件为大家整理了很多可以通过拍照来识别汽车的车型和价格的工具,这些软件可以帮助用户去了解汽车的种类和价格,当用户在买车的时候就不会被骗了。软件功能强大,识别准确,信息齐全,有需要的用户,快来当易网下载吧!http://m.downyi.com/key/paizhaoshicheapp
7.什么可以识别车型软件大全什么可以识别车型推荐下载PP助手为您提供什么软件可以识别车型大全推荐,在这里我们为您提供什么软件可以识别车型软件下载资源,什么软件可以识别车型安卓版本、官方版本&老版本下载地址合集,还可查阅相关什么软件可以识别车型攻略大全,欢迎到PP助手下载。https://wap.pp.cn/topic/561112/
8.车标识别系统车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频http://jamy1989.51sole.com/companyproductdetail_268598048.htm
9.识别app下载识别app合集下载植物识别王手机版简介通过拍照的方式来帮助用户轻松识别各种植 查看详情动植物识别软件 软件大小:25.00M 更新时间:2022-12-23 动植物识别是一款实用的识别工具,它支持多种物体的识别,只需要对着目标拍照就能快速显示结果。你也可以导入本地相册,它还能提取图片中的文本信息。软件拥有强大的识别功能,出错率极低,http://www.xfdown.com/p/h1_K78684_P3.html
10.ocr文字识别技术主要应用于哪些嘲?易用的文字识别软件有哪些?2.银行卡识别:主要识别银行卡卡号,用于移动支付绑卡,提升APP用户体验(互联网)。 3.车牌识别:主要识别车牌号码、车牌颜色、车牌类型、车标、车身颜色等车辆特征信息,用于移动警务,占道停车,停车场管理,车险等领域(互联网)中,支持识别普通蓝牌、黄牌(双层)、军牌(双)、武警牌(双)、警牌、农用车牌、大使馆车牌等各种https://www.foxitsoftware.cn/scanner/jiaocheng/635.html
11.车牌识别系统设计方案(通用8篇)要求系统提供相应的应用软件,实现营区管理的高效率、智能化。 根据碧桂园某小区商圈停车场的具体要求及实际情况,遵循实用、安全、先进、经济、可靠、可扩充原则进行设计。该商圈共有1个车辆出入口通道,出入口通道上安装高清识别一体机一套、入出口道闸一套,中心电脑一台。 通过网线或光纤将物业管理电脑电脑连接起来,可https://www.360wenmi.com/f/fileh533m5gy.html
12.车标识别大全图片车标识别大全图片 千家文2024-11-29 04:24:20【《诗经》木瓜,原文,译文 - 知乎】2人已围观 简介车标识别大全图片-车标识别大全图片修罗许庭了真的]车标识别大全图片于确认她们生终是玩。-车标识别大全图片-车标识别大全图片 车标识别大全图片修罗许庭了真的]车标识别大全图片于确认她们生终是玩。 天https://www.qjwen.com/book/309474.html
13.分离和混合数据识别计算机应用与软件工程化工技术较强从专利数量上来看,浙江工业大学的重点技术领域是:有机化学、分离和混合加工作业、数据识别、计算机应用与软件工程、化工。在这5个领域上获得了数量最多的中国局专利,高达267至146项。 表9.22-1 浙江工业大学主要技术领域的专利分布 技术领域 2021 2020 2019 2018 2017 2016 2015 增长率 1 有机化学 267 227 163 https://wap.sciencenet.cn/blog-681765-1325689.html
14.保卫部更换车辆识别系统项目(16)视频分辨率: 1920×1080 或 1600×1200; (17)图像设置:饱和度,亮度,对比度,白平衡,增益,3D 降噪通,过软件可调,支持宽动态; (18)触发方式:I/O 线圈触发 支持;视频检测 支持; (19)白名单: 最大支持 10000 条白名单车辆,可直接联动道闸输出; (20)智能识别: 车牌识别、车身颜色识别、车标识别 ; (21https://www.chinabidding.com/bidDetail/255351287-BidResult.html
15.zfcg.fuzhou.gov.cn/upload/document/20210531/a2f60d92e4d649a9l 车辆颜色识别:包括白色、灰色、黑色、红色、紫色、蓝色、黄色、绿色、青色、棕色、粉红色11种车辆颜色。 l 车辆车型识别:包括客车、大货车、轿车、面包车、小货车、SUV/MPV、中型客车、三轮车/二轮车8种车辆车型。 l 车标识别:包括奔驰、宝马、大众、别克、丰田、本田、依维柯、金杯、福特、现代、马自达、奇瑞、http://zfcg.fuzhou.gov.cn/upload/document/20210531/a2f60d92e4d649a9bd2b904312f583f0.html