农业大数据为农民和农业从业者提供了更多的决策依据。通过收集、整合和分析农业生产过程中的各种数据,如气象数据、土壤信息、作物生长情况等,农民可以及时了解到农作物的生长状况、病虫害风险等重要信息。基于这些数据,他们可以采取相应的措施,如调整灌溉水量、施肥量、农药使用等,以最优化地管理自己的农田。此外,农业大数据还可以帮助农民做出更准确的市场预测,选择合适的种植作物,从而提高产量和经济效益。
02信息收集
农业大数据的应用有助于优化农产品的供应链管理。在传统的农产品供应链中,信息流通不畅、信息不对称等问题常常导致农产品供应与需求之间存在较大的差距。而通过农业大数据的应用,可以实现农产品的溯源管理、物流优化和市场监测等一系列功能,提高农产品供应链的透明度和效率。农产品的产地、种植、采摘、加工和运输等环节的各类数据都可以被记录、追踪和共享,消费者可以通过扫描商品上的二维码或查询数据库,了解到农产品的生产过程和质量信息,增加了消费者对农产品的信任。
03可持续发展
农业大数据的应用还有助于推动农业的可持续发展。随着全球人口的增长和资源的有限性,农业可持续发展成为当务之急。通过农业大数据的应用,可以实现农产品生产的精准管理,减少农药、化肥等农业投入品的使用量,避免浪费和环境污染。此外,农业大数据还可以帮助农民选择更适合当地气候和土壤条件的作物品种,提高农作物的适应能力,减少自然灾害对农业的影响。
农业大数据特性
01数据采集和记录
02数据存储和管理
农业大数据系统需要提供可靠的数据存储和管理功能,以确保数据的安全和高效获取。数据存储应采用可扩展的架构,支持大规模数据存储和处理,并具备数据备份和灾备恢复的功能。
03数据分析和挖掘
农业大数据系统应具备强大的数据分析和挖掘能力,能够从海量数据中提取有价值的信息和实现数据的深度挖掘。数据分析可以包括数据可视化、统计分析、机器学习等方法,以发现数据中的潜在规律和趋势,为农业决策提供科学依据。
04决策支持和预测
基于数据分析结果,农业大数据系统应能够提供决策支持和预测功能,为农民和农业从业者提供准确的决策建议。系统可以通过模型预测和场景分析,帮助农民优化农田管理、作物种植、病虫害防治等决策,以最大化农业生产效益。
05数据共享和交互
农业大数据系统应支持数据的共享和交互,以促进农业生产各方之间的合作和信息流通。农民、农产品加工企业、供应链管理方等都可以通过数据共享,共同参与农业生产过程,实现信息的共享和优化资源利用。
06智能感知和预警
农业大数据系统应能够通过智能感知技术,及时掌握农作物生长情况、气象变化、病虫害风险等信息,并提供相应的预警功能。这样可以帮助农民及时采取措施,避免损失和减少农业风险。
07溯源和品质管理
农业大数据发展趋势
(一)适农信息监测技术、传输技术、计算技术水平显著提升,农业信息化基础设施不断完善。
随着“宽带乡村”等战略的深入实施,我国农业信息化基础设施在数据获取能力、数据资源建设、数据算力、农业农村网络通信、应用终端等方面的发展取得重要成就。
农业“新基建”拉开序幕。农业农村大数据中心等新型基础设施建设加快推进,数字农业新技术、新产品、新业态不断涌现,北斗、5G、物联网、农业专用传感器、智能装备加速在农村应用布局,推动智慧农业加速发展。5G发展进入全面深入落实阶段,各地开始重视5G在农业领域的融合创新与应用发展,涌现了基于5G的智慧农业示范园建设运营模式创新实践;如陕西省杨凌示范区积极推动5G信息化建设,依托5G技术建成农业大数据管控中心、基于物联网下的农业生产运营管控体系;江苏省南京国家农业高新技术产业示范区与中国移动通信集团有限公司江苏分公司合作,计划3年内实现区域内“5G+4G”全覆盖,为农业技术创新注入数字新动能。5G赋能信息进村入户,“5G+”益农云电商直播、“5G+”智慧养殖、“5G+”智慧种植、5G智慧农机等亮点内容频现。此外,乡村传统基础设施数字化转型加速,农村电网、智慧水利、农村物流、农机装备等加快数字化改造升级,全国水利一张图、全国农村公路基础属性和电子地图数据库建成,农机装备数字化步伐提速,北斗终端应用不断扩展。
(二)农业信息标准化、获取、分析处理、管理等技术取得突破,农业大数据建设成效显著。
我国农业大数据正处于长期持续增长的历史阶段,农业资源(如大气、土壤、水、生物质等)、农业环境(如气象、水文、土壤水分、温湿度等)、农业作物(如作物长势、产量、病虫害等)、农业过程(如育种、施肥、收割、运输、销售等)等诸多方面正在持续产生海量数据资源。