日内市场空间维度逐渐变化,交易范围呈扩大趋势,这主要源于大规模新能源并网,对跨区域电力平衡的诉求。一方面新能源发电具有强波动性的特征,其并网比例逐年增加;另一方面传统电源受爬坡能力、最小出力等技术因素限制,调节能力有限。因此,大范围的资源优化配置已经成为提升新能源消纳水平的重要途径[8]。
欧洲、北美等地区的现货市场交易范围呈扩大融合趋势。2009年和2018年,欧盟分别颁布“第三能源法案”(ThirdEnergyPackage)和“清洁能源法案”(CleanEnergyPackage),推动建立欧洲统一电力市场,并提出相应的区域价格耦合(pricecouplingofregion,PCR)方法[9]。截至2018年底,欧洲已实现27个国家在日前跨境市场耦合,14个国家在日内跨境市场耦合,此外,欧洲正在设计推进统一实时市场[10]。在北美地区,以加州独立电网运营机构(CAISO,CaliforniaISO)为例,在2014年CAISO启动了美国西部跨区域电力不平衡市场(EnergyImbalanceMarket,EIM),EIM中15min市场与日内市场特征较为相似,EIM市场交易范围同样呈现出逐渐扩大趋势[11]。
1.2日内市场交易需求提升
1.3日内市场功能定位强化
通过价格信号引导是激励市场参与者主动进行偏差调节的重要方式。在市场初期设计中,北美日内市场大多采用没有独立的出清价格机,而是采用与实时市场相同的价格进行出清。在现阶段日内市场设计中,利用价格信号引导偏差修正,在降低预测偏差导致的价格波动、激励新能源参与者提升自身预测水平、提升电网运行安全性等方面,均具有重要意义。
1.4日内市场设计复杂度提高
2省间日内市场特征及设计挑战
2.1省间日内市场特征
1)省间日内市场为实现全局优化,部分细节简化。为扩大优化范围,保证出清效率,省间市场对部分省内细节进行一定程度简化。例如,将各省电网等效为单一节点。在提高出清效率的同时,也增大了执行风险。
2.2省间日内市场设计挑战
2.2.1耦合衔接省内市场
1)资源耦合。
省间市场、省内市场作为空间维度不同的两个市场,其设计的难点在于如何协调两市场交易次序,解决两市场交易资源共用问题。交易资源包括电能量、辅助服务等。市场参与者可以同时选择在省间市场与省内市场进行交易,受可交易总量限制,参与者在两市场的交易量存在相互制约关系。例如,对于某卖方参与者,若其在省内市场交易量过大,可能导致其在省间市场的可交易量减少,反之亦然。针对上述交易资源共用问题,在不能集中优化的情况下,不确定省间交易量则无法确定省内可交易量,同理不确定省内交易量则无法确定省间可交易量。
需要说明的是,上述问题虽然可以通过事先按一定规则分配的方式解决(例如:市场参与者事先分配其在两市场的申报量),但由于市场交易的不确定性,可能会导致交易结果与预期偏差较大。因此设计合理的市场耦合机制,避免各市场间低效运行,具有重要意义。此外,相较于日前市场,日内市场对交易流程简洁性、高效性有更高的要求。
2.2.2融合区域调峰辅助服务市场
目前,东北、西北、华北、华东已建立了区域调峰辅助市场,部分地区正在进行方案编制。各区域调峰市场差异较大,交易频率、合同时长、交易市场形态均不相同,如表2所示。缺乏统一规范的市场设计,增加了区域调峰辅助服务市场与其他市场融合的难度。
2.2.3通道可用容量建模与管理
通道可用容量建模管理是现货市场设计中的关键环节,也是市场出清结果能够进行调度执行的重要保障。省间现货市场为提高市场效率,将部分细节进行简化,例如将全省等效为单一节点。在简化过程中,部分信息扭曲或缺失,增加了通道建模管理的难度。
1)省间通道可用容量建模。
省间交易路径大部分以“交流通道直流通道交流通道”的形式构成。省间市场现阶段规则中,省间通道容量采用典型的可用输送容量(availabletransmissioncapacity,ATC)模型确定。
基于ATC的通道可用容量建模方式基于一定程度的简化假设。潮流在直流线路中定功率传输,不存在潮流转移分布,但在交流线路中分布需遵循物理特性。这意味着交易电量无法仅通过指定交流通道由卖方输送至买方,且不经过其他交流网络。因此,对于耦合关系复杂的交流电网,基于ATC的省间通道容量模型无法完全适应省间市场需求。
2)省内穿越潮流约束建模。
省间交易出清模型中以省为单位进行集中申报,将全省等效为单一节点。这意味着省间市场出清模型未充分考虑省间交易产生的穿越潮流对省内通道的影响,换言之,未充分考虑省内交流通道容量对省间交易的约束。
在实际物理问题中,绝大部分省间市场参与者不直接通过省间通道相连,而是经省内通道与省间通道相连。受限于省内通道可用容量,省间市场交易量可能存在限制;同时,省间市场交易量与省内市场交易量可能存在相互制约。因此,将全省等效为单一节点,适于内部无阻塞或阻塞较轻的地区;对于内部阻塞严重的地区难以适用。针对省间交易产生的穿越潮流问题,欧洲市场采用再调度、反向交易等方式对于区内阻塞问题进行处理,在解决问题的同时也导致区内调度成本增加等负面问题出现。中国电网跨区输送能力较强,省间市场交易占比高于平均水平,省间交易产生的穿越潮流的影响将更加显著。因此,更需采用适合的模型方法和管理规则解决这一问题。
2.2.4适应现阶段新能源预测特征
省间市场的定位为大范围资源优化配置,为进一步提升新能源消纳水平,省间日内市场设计应同现阶段新能源出力预测特征相匹配。
针对上述问题,在省间现货市场设计中,应预留至少一次修正机会,当预测出现较大偏差导致无法履约时,允许通过再次交易的方式进行修正。若再次交易产生的偏差调节成本,应由预测存在误差的市场参与者承担。此外,省间日内市场设计除促进新能源消纳外,还应激励新能源参与者主动提高自身预测水平。
3.1基于顺序出清的省内市场耦合模式
3.1.1整体出清模式
为实现资源优化配置,省间市场自身宜采用集中出清方式;同时集中出清方式与省内市场设计保持一致,有助于向全国统一电力市场的远期形态过渡。(全国统一电力市场的远期形态特征为考虑各市场成员报价与全网平衡,基于安全约束确定省间与省内通道输电能力,全局优化出清。)对于省间、省内两个空间维度不同的市场,可采用顺序优化出清或联合优化出清的模式进行出清。
1)顺序出清。
顺序出清模式通过合理规则设计,实现两市场的解耦优化和边界信息迭代交互。利用合理时序设计,实现市场交易的高效性、稳定性和可靠性。顺序出清在结果最优性方面可能低于联合出清,但对市场出清模型、计算量等要求较低,适于省间与省内市场的部分耦合模式。
2)联合出清。
联合出清模式需引入分层多主体交互模型,在主、子问题中分别对省间、省内部分建模,并采用了联合出清方法。总体上,联合出清的全局最优性好,但对各市场设计的协同性要求较高,出清模型复杂、计算量大,适于省间与省内市场的完全耦合模式。
基于现货市场建设现状以及建设路径,中期可考虑采用顺序出清模式;远期可考虑采用联合出清出清模式。本文重点针对顺序出清进行讨论。在顺序出清模式下,对于空间维度不同的两个市场出清,其本质为双层规划问题,因此至少需要一次迭代才能完成出清。即自省内市场至省间市场的平衡申报,侧重考虑平衡问题;自省间市场至省内市场的正式出清,侧重考虑阻塞管理。基于此,省内市场可首先进行预出清或预平衡,作为省间市场申报的参考;然后省间市场正式申报、出清,作为省内市场的边界条件;省内市场再正式出清,以避免出现反复迭代。省内市场正式出清结果可能与预出清、预平衡结果存在一定偏差。此外,各省内市场也可根据实际平衡与阻塞情况,适当简化省内交易流程。
3.1.2细节设计
1)交易环节构成。
省间交易流程应包含3部分主要时段:交易时段T交易、预留时段T预留、合同时段T合同。交易时段用于交易申报出清,预留时段用于同其他市场配合,合同时段为交易执行时段。图3中t出清—t执行为交易预留空窗时段,为实现空间范围不同的两市场耦合,预留空窗时段是必要的。
3)申报方式。
3.2区域辅助服务市场规范化设计与过渡融合
1)辅助服务市场特征。
2)区域市场特征。
3.3基于潮流和关键支路的通道建模管理
1)基于潮流的省间市场通道建模。
在经典出清模型中,通过引入潮流分布转移因子(powertransferdistributionfactor,PTDF),可实现基于潮流的通道阻塞管理。在省间市场出清模型中,各省简化为单一节点,因此可考虑结合区域PTDF,实现省间通道阻塞管理,解决联络关系复杂或阻塞严重的交流通道容量建模问题。区域PTDF可通过离线计算,定期动态修正的模式确定。
基于潮流的建模方法引入与否,应结合该区域交流联网关系复杂度。FB模型更贴近电网物理特性,建模方法复杂,计算量较大。当基于潮流的可用容量建模方法不会明显提升市场效率或改善阻塞管理水平时,可采用基于ATC的简化模型。此外,基于潮流的可用容量建模可实现省间与省内阻塞协同管理。
2)基于关键支路的省内穿越潮流建模。
在省间交易中,若将各省简化为单一节点,省内通道建模过于简化,无法适应穿越潮流管理需求。若保留全部节点,综合考虑各省模型复杂度与计算量,难以满足省间交易需求。因此,为解决省间交易产生的穿越潮流问题,应引入适当方法对省内通道进行建模。
为此,可考虑引入关键支路方法。通过选取省内重要线路、断面,结合FB模型实现对穿越潮流约束进行建模,如图5所示(其中,L1、L2、L3为省间联络线)。通过合理选取省内关键支路,在量化省内关键通道对省间交易限制的同时,不显著增加模型复杂度与计算量[20]。与前文中提到的欧洲电力市场中再调度、反向交易的事后阻塞管理不同,基于关键支路的通道模型是事前阻塞管理方法,更有助于保证电网安全与市场效率。此外,根据阻塞情况,分区颗粒度细化也能够提高阻塞管理水平。
3.4基于滚动重叠的日内交易机制
受新能源出力预测水平影响,日前市场出清结果与日内市场出清结果偏差较大。基于动态控制技术架构的滚动重叠机制有助于高效利用超短期预测信息,及时调整日前出清结果,实现由日前向实时执行的平滑过渡,降低电网运行风险。同时,合理设计的滚动机制有助于激励市场参与者提升自身预测精度。
2)滚动交易周期。
省间日内市场滚动周期应综合考虑交易复杂度、电网风险、设备寿命等因素,滚动周期过短意味着交易频繁,可能导致市场效率降低,引起电网风险增加;滚动周期过长不利于高效利用超短期新能源出力预测信息。综合考虑交易复杂度与电网运行安全,滚动周期2~4h为宜。
3)滚动结算机制
为实现日内滚动交易,需配套相应的日内市场滚动出清价格机制。传统的两部制偏差结算难以适应日内滚动交易的需求,应设计建立相匹配的三部制或多部制结算机制。