农业银行:基于大数据+AI体系的数据治理实践
2019-07-294077
项目背景
过去十年,农业银行信息化建设积累了海量的数据。为了盘活这些数据资源,充分发挥数据价值,在大数据平台和AI建设过程中,农业银行采取“统筹规划、顶层设计、分步实施”的策略,不断发展和完善数据治理内容,摸索出基于大数据+AI体系下的“一保八维”的数据治理框架,打造了全流程智能化的一站式数据治理平台,逐步解决了数据的全面性、准确性、完整性、一致性、及时性等问题,提升了数据资产管理水平和数据质量,提高了数据服务能力,为全行数据管理、产品创新、数字化转型等提供数据支撑。
项目方案
1.提出“一保八维”的数据治理框架,全面促进高质量发展
数据治理是一个系统工程,通常采用自顶向下指导,自下而上推进。在农业银行大数据+AI建设过程中,逐渐摸索建立了涵盖研发、数据、业务、安全的企业级的“一保八维”的数据治理框架,为高效的数据质量、稳定的数据服务奠定基础。“一保”是指数据质量保障体系,包括建立高效的数据治理组织架构,为数据治理各项活动提供强有力的组织保障;建立全面严谨的制度章程,为数据治理快速有序推进提供制度依据;建立全流程、全生命周期的闭环数据治理流程,为全面进行数据治理提供标准化、规范化的闭环流程机制;打造数据治理平台,为数据治理提供自动、自助、智能化的平台支撑。“八维”是指企业级的数据模型管理、数据标准管理、元数据管理、主数据管理、数据质量管理、数据服务管理、数据安全管理和数据生命周期管理八大核心领域,实现对数据治理保障机制的支撑与落地。
2.采用数据质量闭环治理机制,有效提升数据质量
数据质量是指通过技术、业务手段使数据符合业务规则、数据标准等要求,保障数据的完整性、准确性、及时性和一致性的活动。农业银行在大数据平台数据治理过程中,通过建立数据质量闭环治理机制,以组织架构为保障,以流程制度为依据,落实责任主体,同规同源,稳步推进,有效提升数据质量。通过建立数据质量闭环治理机制,主要解决“是不是问题”“谁的问题”“谁来整改”“如何良性循环”等一系列痛点,形成健全的数据管控长效机制,推动数据问题标本兼治,全面提升数据的全面性、完整性、准确性、及时性、一致性,降低数据管理成本,提升数据质量,减少因数据不可靠导致的决策偏差和损失(见图1)。
图1数据质量闭环治理机制
3.建立智能化数据治理平台,提供全流程一站式数据服务
借助大数据和AI技术,以元数据管理为基础,提升数据质量为目标,搭建智能化数据治理平台(见图2),有效提升了数据服务质量和能力,支撑了产品创新、服务创新、数字化转型等。
图2数据治理平台总体架构
数据治理平台构建了9大功能模块,包括数据标准、元数据管理、数据质量、数据处理、主数据管理、数据资产管理、数据交换、数据生命周期管理、数据安全模块。解决了8大问题,包括业务系统缺少统一标准、数据质量差、变更对应的影响分析困难、业务系统间资产共享差、数据安全无保障、数据管理体系不完善、数据价值利用低、数据管理成本高且效率低等问题。凸显8个能力,包括海量存储和高效的数据处理能力、全面的数据覆盖能力、自动化的元数据采集能力、立体的数据管理能力、全流程一站式数据治理能力、自助式服务能力、智能化数据服务能力、数据安全管理能力。
4.借力AI技术,实现数据治理向“智能化”转变
5.通过业技联动,推进数据治理工作,提升数据质量
大数据平台下数据治理工作具有长期性、艰巨性和复杂性。农业银行数据治理工作遵循“顶层设计、问题驱动、急用先行、标本兼治、业技联动”的原则,采取“摸家底、建机制、搭平台”三步走方针,将数据治理分为常规数据治理和专项数据治理。在常规数据治理方面,优先通过技术手段解决数据问题;保证业技联动,一是联合信息管理部进行客户、合约、内部核算等业务主题的数据监测,提交质量监测报告;二是参与个金部、公司部等业务部门的检查规则制订;三是完成客户信息治理等多项数据管控的工作,初步形成问题发现、收集、分析、报告、整改、验证的协作机制,有效避免了数据“边治理、边污染”。在专题数据治理方面,根据业务部门的需求,开展个人客户、对公客户、个人账户、AI账户、非居民客户、信贷业务、交易对手、微捷贷等专题治理,形成了近千条质量监测规则,有效提升了数据质量。
总结与展望
基于大数据和AI体系的数据治理是银行业实施大数据+AI战略的重要基础和保障,它对数据价值挖掘、产品创新、服务创新、数字化转型等工作提供重要支撑。农业银行在大数据+AI建设过程中,采取“摸家底、建机制、搭平台”三步走方针,探索出“一保八维”的数据治理框架,搭建了基于大数据和AI技术的智能化的数据治理平台,为数据治理工作提供坚实的技术支撑,有力提升了数据资产质量、数据管理能力以及系统研发运维效率,形成了数据管控的长效机制,满足了大数据背景下商业银行精细化管理和产品创新、服务创新。未来,农业银行将更加深入研究和应用大数据和AI等金融科技技术,加快科技转换能力,利用科技赋能传统数据治理,加快农业银行的数字化转型。
推荐阅读
河南农信:基于大数据平台的智能审计管理信息系统
随着河南省农村信用社各项业务的飞速发展及信息化建设的不断深入,创新性金融产品和金融服务不断涌现,业务数据和业务流程复杂程度不断提高,交易信息和管理信息不断膨胀。
2018第二届农村中小金融机构科技创新优秀案例评选河南农信2019-07-29
安徽农信:基于人工智能的滨湖数据中心基础设施能效优化
数据中心基础设施能耗巨大,数据中心节能能够带来显著的经济和社会效益。而在数据中心基础设施中,空调能耗又占到全部能耗的70%,本项目通过将人工智能应用到数据中心基础设施空调系统运行控制中,为安徽省联社乃至金融行业数据中心基础设施节能降耗探索一条智能化创新的道路。
2018第二届农村中小金融机构科技创新优秀案例评选安徽农信2019-07-29
江西农信:“百福快贷”项目
网络信贷项目依托互联网技术,采用全流程“不落地”线上操作模式,以大数据应用为基础,实现贷款申请受理、审批、放款、回收和贷后管理全部在线完成,整个贷款审批流程无需人工参与,实现了系统几分钟内自动产生审批结果,真正意义上达到了可足不出户就可完成贷款申请和收到贷款的目标。
2018第二届农村中小金融机构科技创新优秀案例评选江西农信2019-07-29
重庆农商行:基于数据决策的全线上零售信贷产品“渝快贷”
“渝快贷”是重庆农商行推出的基于数据决策的个人全线上信用消费贷款产品。
2018第二届农村中小金融机构科技创新优秀案例评选重庆农商行2019-07-29
甘肃农信:数据治理与数据管控平台
通过对我行内部数据的商业应用和技术管理的一系列政策和流程的梳理及设计,搭建一套涵盖元数据管理、数据标准、数据质量、数据资产管理等方面的数据治理及管控平台,赋能银行数字化转型。通过实施数据治理和建立数据管控平台,满足人行、银保监会等监管机构的各类监管标准、安全分级标准、监督检查及其他各项要求,提高甘肃农信数据质量和业务数据的应用价值。
2022年第六届农村中小金融机构科技创新优秀案例评选甘肃农信2019-07-29
山东农信:信e贷项目
信e贷项目的建设目标是实现全自动的线上信贷业务,主要包括线上贷款申请、合同签订、贷款发放和贷款归还等功能。
2018第二届农村中小金融机构科技创新优秀案例评选山东农信2019-07-29