广州数控980TD编程操作说明书第一篇编程说明第一章:编程基础1.1GSK980TD简介广州数控研制的新一代普及型车床CNCGSK980TD是GSK980TA的升级产品,采用了32位高性能CPU和超大规模可编程器件FPGA,运用实时多任务控制技术和硬件插补技术,实现μm级精度运动控制和PLC逻辑控制。
技术规格一览表运动控制控制轴:2轴(X、Z);同时控制轴(插补轴):2轴(X、Z)插补功能:X、Z二轴直线、圆弧插补位置指令范围:-9999.999~9999.999mm;最小指令1.2机床数控系统和数控机床数控机床是由机床数控系统(NumericalControlSystemsofmachinetools)、机械、电气控制、液压、气动、润滑、冷却等子系统(部件)构成的机电一体化产品,机床数控系统是数控机床的控制核心。
机控系统由控制装置(ComputerNumericalControler简称CNC)、伺服(或步进)电机驱动单元、伺服(或步进)电机等构成。
数控机床的工作原理:根据加工工艺要求编写加工程序(以下简称程序)并输入CNC,CNC加工程序向伺服(或步进)电机驱动单元发出运动控制指令,伺服(或步进)电机通过机械传动构完成机床的进给运程序中的主轴起停、刀具选择、冷却、润滑等逻辑控制指令由CNC传送给机床电气控制系统,由机床电气控制系统完成按钮、开关、指示灯、继电器、接触器等输入输出器件的控制。
目前,机床电气控制通常采用可编程逻辑控制器(ProgramableLogicControler简称PLC),PLC具有体积小、应用方便、可靠性高等优点。
由此可见,运动控制和逻辑控制是数控机床的主要控制任务。
GSK980TD车床CNC同时具备运动控制和逻辑控制功能,可完成数控车床的二轴运动控制,还具有内置式PLC功能。
根据机床的输入、输出控制要求编写PLC程序(梯形图)并下载到GSK980TD,就能实现所需的机床电气控制要求,方便了机床电气设计,也降低了数控机床成本。
实现GSK980TD车床CNC控制功能的软件分为系统软件(以下简称NC)和PLC软件(以下简称PLC)二个模块,NC模块完成显示、通讯、编辑、译码、插补、加减速等控制,PLC模块完成梯形图解释、执行和输入输出处理。
1.3编程基本知识1、坐标轴定义数控车床示意图GSK980TD使用X轴、Z轴组成的直角坐标系,X轴与主轴轴线垂直,Z轴与主轴轴线方向平行,接近工件的方向为负方向,离开工件的方向为正方向。
按刀座与机床主轴的相对位置划分,数控车床有前刀座坐标系和后刀座坐标系,前、后刀座坐标系的X轴方向正好相反,而Z轴方向是相同的。
在以后的图示和例子中,用前刀座坐标系来说明编程的应用。
前刀座的坐标系后刀座的坐标系2、机床坐标系和机械零点机床坐标系是CNC进行坐标计算的基准坐标系,是机床固有的坐标系,机床坐标系的原点称为机械参考点或机械零点,机械零点由安装在机床上的回零开关决定,通常情况下回零开关安装在X轴和Z轴正方向的最大行程处。
进行机械回零操作、回到机械零点后,GSK980TD将当前机床坐标设为零,建立了以当前位置为坐标原点的机床坐标系。
注:如果车床上没有安装零点开关,请不要进行机械回零操作,否则可能导致运动超出行程限制、机械损坏。
3、工件坐标系和程序零点工件坐标系是按零件图纸设定的直角坐标系,又称浮动坐标系。
当零件装夹到机床上后,根据工件的尺寸用G50指令设置刀具当前位置的绝对坐标,在CNC中建立工件坐标系。
通常工件坐标系的Z轴与主轴轴线重合,X轴位于零件的首端或尾端。
工件坐标系一旦建立便一直有效,直到被新的工件坐标系所取代。
用G50设定工件坐标系的当前位置称为程序零点,执行程序回零操作后就回到此位置。
注:在上电后如果没有用G50指令设定工件坐标系,请不要执行回程序零的操作,否则会产生报警。
图中,XOZ为机床坐标系,X1O1Z1为X坐标轴在工件首端的工件坐标系,X2O2Z2为X坐标轴在工件尾端的工件坐标系,O为机械零点,A为刀尖,A在上述三坐标系中的坐标如下:A点在机床坐标系中的坐标为(x,z);A点在X1O1Z1坐标系中的坐标为(x1,z1);A点在X2O2Z2坐标系中的坐标为(x2,z2);4、插补直线插补:X轴和Z轴的合成运动轨迹为从起点到终点的一条直线。
圆弧插补:X轴和Z轴的合成运动轨迹为半径由R指定、或圆心由I、K指定的从起点到终点的圆弧。
螺纹插补:进给轴跟随主轴的旋转运动,主轴旋转一周螺纹切削的长轴移动一个螺距,短轴与长轴进行直线插补。
示例:G32W-27F3;(B→C;螺纹插补)G1X50Z-30F100;G1X80Z-50;(D→E;直线插补)G3X100W-10R10;(E→F;圆弧插补)…M30;5、绝对坐标编程和相对坐标编程编写程序时,需要给定轨迹终点或目标位置的坐标值,按编程坐标值类型可分为:绝对坐标编程、相对坐标编程和混合坐标编程三种编程方式。
使用X、Z轴的绝对坐标值编程(用X、Z表示)称为绝对坐标编程;使用X、Z轴的相对位移量(以U、W表示)编程称为相对坐标编程;GSK980TD允许在同一程序段X、Z轴分别使用绝对编程坐标值和相对位移量编程,称为混合坐标编程。
示例:A→B直线插补绝对坐标编程:G01X200.Z50.;相对坐标编程:G01U100.W-50.;混合坐标编程:G01X200.W-50.;或G01U100.Z50.;注:当一个程序段中同时有指令地址X、U或Z、W,X、Z指令字有效。
例如:G50X10.Z20.;G01X20.W30.U20.Z30.;【此程序段的终点坐标为(X20,Z30)】6、直径编程和半径编程按编程时X轴坐标值以直径值还是半径值输入可分为:直径编程、半径编程。
注1:在本说明书后述的说明中,如没有特别指出,均采用直径编程。
1.4程序的构成为了完成零件的自动加工,用户需要按照CNC的指令格式编写零件程序(简称程序)。
程序示例:O0001;(程序名)N0005G0X100Z50;(快速定位至A点)N0010M12;(夹紧工件)N0015T0101;(换1号刀执行1号刀偏)N0020M3S600;(启动主轴,置主轴转速600转/分钟)N0025M8(开冷却液)N0030G1X50Z0F600;(以600mm/min速度靠近B点)N0040W-30F200;(从B点切削至C点)N0050X80W-20F150;(从C点切削至D点)N0060G0X100Z50;(快速退回A点)N0070T0100;(取消刀偏)N0080M5S0;(停止主轴)N0090M9;(关冷却液)N0100M13;(松开工件)N0110M30;(程序结束,关主轴、冷却液)N0120%执行完上述程序,刀具将走出A→B→C→D→A的轨迹。
1、程序的一般结构程序是由以“OXXXX”(程序名)开头、以“%”号结束的若干行程序段构成的。
程序段是以程序段号开始(可省略),以“;”结束的若干个指令字构成。
程序的一般结构,如图所示。
程序名GSK980TD最多可以存储384个程序,为了识别区分各个程序,每个程序都有唯一的程序名(程序名不允许重复),程序名位于程序的开头由O及其后的四位数字构成指令字指令字是用于命令CNC完成控制功能的基本指令单元,指令字由一个英文字母(称为指令地址)和其后的数值(称为指令值,为有符号数或无符号数)构成。
程序段程序段由若干个指令字构成,以“;”结束,是CNC程序运行的基本单位。
程序段之间用字符“;”分开。
一个程序段中可输入若干个指令字,也允许无指令字而只有“;”号(EOB键)结束符。
有多个指令字时,指令字之间必须输入一个或一个以上空格。
在同一程序段中,除N、G、S、T、H、L等地址外,其它的地址只能出现一次,否则将产生报警(指令字在同一个程序段中被重复指令)。
N、S、T、H、L指令字在同一程序段中重复输入时,相同地址的最后一个指令字有效。
同组的G指令在同一程序段中重复输入时,最后一个G指令有效。
程序段号程序段号由地址N和后面四位数构成:N0000~N9999,前导零可省略。
程序段号应位于程序段的开头,否则无效。
程序段号可以不输入,但程序调用、跳转的目标程序段必须有程序段号。
程序段号的顺序可以是任意的,其间隔也可以不相等,程序段号按编程顺序递增或递减。
如果在开关设置页面将“自动序号”设置为“开”,将在插入程序段时自动生成递增的程序段号.2、主程序和子程序为简化编程,当相同或相似的加工轨迹、控制过程需要多次使用时,就可以把该部分的程序指令编辑为独立的程序进行调用。
调用该程序的程序称为主程序,被调用的程序(以M99结束)称为子程序。
子程序必须有自己独立的程序名,子程序可以被其它任意主程序调用,也可以独立运行。
子程序结束后就返回到主程序中继续执行。
(后面章节详细叙述)第二章MSTF指令2.1M指令(辅助功能)M指令由指令地址M和其后的1~2位数字或4位数组成,用于控制程序执行的流程或输出M代码到PLC。
1、程序结束M02指令格式:M02或M2指令功能:在自动方式下,执行M02指令,当前程序段的其它指令执行完成后,自动运行结束,光标停留在M02指令所在的程序段,不返回程序开头。
若要再次执行程序,必须让光标返回程序开头。
2、程序运行结束M30指令格式:M30指令功能:在自动方式下,执行M30指令,当前程序段的其它指令执行完成后,自动运行结束,加工件数加1,取消刀尖半径补偿,光标返回程序开头(是否返回程序开头由参数决定)。
当CNC状态参数NO.005的BIT4设为0时,光标不回到程序开头;当CNC状态参数NO.005的BIT4设为1时,程序执行完毕,光标立即回到程序开头。
3、子程序调用M98指令功能:在自动方式下,执行M98指令时,当前程序段的其它指令执行完成后,CNC去调用执行P指定的子程序,子程序最多可执行9999次。
M98指令在MDI下运行无效。
4、从子程序返回M99指令功能:(子程序中)当前程序段的其它指令执行完成后,返回主程序中由P指定的程序段继续执行,当未输入P时,返回主程序中调用当前子程序的M98指令的后一程序段继续执行。
如果M99用于主程序结束(即当前程序不是由其它程序调用执行),当前程序将反复执行。
M99指令在MDI下运行无效。
示例:图A表示调用子程序(M99中有P指令字)的执行路径。
图B表示调用子程序(M99中无P指令字)的执行路径5、程序停止M00指令格式:M00或M0指令功能:执行M00指令后,程序运行停止,显示“暂停”字样,按循环启动键后,程序继续运行。
6、主轴正转、反转停止控制M03、M04、M05指令格式:M03或M3,M04或M4,M05或M5指令功能:M03:主轴正转;M04:主轴反转;M05:主轴停止。
7、冷却泵控制M08、M09指令格式:M08或M8,M09或M9;指令功能:M08:冷却泵开;M09:冷却泵关8、8润滑液控制M32、M33指令格式:M32;M33;指令功能:M32:润滑泵开;M33:润滑泵关。
2.2刀具功能GSK980TD的刀具功能(T指令)具有两个作用:自动换刀和执行刀具偏置。
自动换刀的控制逻辑由PLC梯形图处理,刀具偏置的执行由NC处理。
指令格式:指令功能:自动刀架换刀到目标刀具号刀位,并按指令的刀具偏置号执行刀具偏置。
刀具偏置号可以和刀具号相同,也可以不同,即一把刀具可以对应多个偏置号。
在执行了刀具偏置后,再执行T□□00,CNC将按当前的刀具偏置反向偏移,CNC由已执行刀具偏置状态改变为未补偿状态,这个过程称为取消刀具偏置。
在加工前通过对刀操作获得每一把刀具的位置偏置数据(称为刀具偏置或刀偏),程序运行中执行T指令后,自动执行刀具偏置。
这样,在编辑程序时每把刀具按零件图纸尺寸来编写,可不用考虑每把刀具相互间在机床坐标系的位置关系。
如因刀具磨损导致加工尺寸出现偏差,可根据尺寸偏差修改刀具偏置。
刀具偏置是对编程轨迹而言的,T指令中刀具偏置号对应的偏置,在每个程序段的终点被加上或减去补偿量。
X轴刀具偏置使用直径值图为移动方式执行刀具偏置时建立、执行及取消的过程。
G01X100Z100T0101;(程序段1,开始执行刀具偏置,即1号刀执行1号刀的刀偏)G01W150;(程序段2,刀具偏置状态)G01U150W100T0100(程序段3,取消刀具偏置)2.3进给功能1、切削进给(G98/G99、F指令)指令格式:G98F__;(F0001~F8000,前导零可省略,给定每分进给速度,毫米/分)指令功能:以毫米/分为单位给定切削进给速度,G98为模态G指令,如果当前为G98模态,可以不输入G98。
指令格式:G99F__;(F0.0001~F500,前导零可省略)指令功能:以毫米/转为单位给定切削进给速度,G99为模态G指令。
如果当前为G99模态,可以不输入G99。
CNC执行G99F__时,把F指令值(毫米/转)与当前主轴转速(转/分)的乘积作为指令进给速度控制实际的切削进给速度,主轴转速变化时,实际的切削进给速度随着改变。
使用G99F__给定主轴每转的切削进给量,可以在工件表面形成均匀的切削纹路。
在G99模态进行加工,机床必须安装主轴编码器。
G98、G99为同组的模态G指令,只能一个有效。
G98为初态G指令,CNC上电时默认G98有效。
2、螺纹切削螺纹切削:切削时,主轴每旋转一圈,刀具移动一个螺距。
切削的速度与指定的螺距大小、主轴实际的旋转速度有关。
螺纹切削时须安装主轴编码器,主轴的实际转速由主轴编码器反馈给CNC。
螺纹切削时,进给倍率、快速倍率对螺纹切削无效。
除01与00组代码不能共段外,同一个程序段中可以输入几个不同组的G指令字,如果在同一个程序段中输入了两个或两个以上的同组G指令字时,最后一个G指令字有效。
没有共同参数(指令字)的不同组G指令可以在同一程序段中,功能同时有效并且与先后顺序无关。
G指令字一览表指令字组别功能备注G0001快速移动初态G指令G01直线插补模态G指令G02圆弧插补(逆时针)G03圆弧插补(顺时针)G32螺纹切削G90轴向切削循环G92螺纹切削循环G94径向切削循环1、模态、非模态及初态G指令分为00、01、02、03、04组。
其中00组G指令为非模态G指令,其它组G指令为模态G指令,G00、G97、G98、G40为初态G指令。
G指令执行后,其定义的功能或状态保持有效,直到被同组的其它G指令改变,这种G指令称为模态G指令。
模态G指令执行后,其定义的功能或状态被改变以前,后续的程序段执行该G指令字时,可不需要再次输入该G指令。
G指令执行后,其定义的功能或状态一次性有效,每次执行该G指令时,必须重新输入该G指令字,这种G指令称为非模态G指令。
系统上电后,未经执行其功能或状态就有效的模态G指令称为初态G指令。
上电后不输入G指令时,按初态G指令执行。
3.2快速定位G00指令格式:G00X(U)Z(W);指令功能:X轴、Z轴同时从起点以各自的快速移动速度移动到终点,如图所示。
两轴是以各自独立的速度移动,短轴先到达终点,长轴独立移动剩下的距离,其合成轨迹不一定是直线。
指令说明:G00为初态G指令;X(U)、Z(W)可省略一个或全部,当省略一个时,表示该轴的起点和终点坐标值一致;同时省略表示终点和始点是同一位置,X与U、Z与W在同一程序段时X、Z有效,U、W无效。
X、Z轴各自快速移动速度分别由系统数据参数NO.022、NO.023设定,实际的移动速度可通过机床面板的快速倍率键进行修调。
示例:刀具从A点快速移动到B点。
G0X20Z25;(绝对坐标编程)G0U-22W-18;(相对坐标编程)G0X20W-18;(混合坐标编程)G0U-22Z25;(混合坐标编程)3.3直线插补G01指令格式:G01X(U)_Z(W)_F_;指令功能:运动轨迹为从起点到终点的一条直线。
轨迹如图所示。
指令说明:G01为模态G指令;X(U)、Z(W)可省略一个或全部,当省略一个时,表示该轴的起点和终点坐标值一致;同时省略表示终点和始点是同一位置。
F指令值为X轴方向和Z轴方向的瞬时速度的矢量合成速度,实际的切削进给速度为进给倍率与F指令值的乘积;F指令值执行后,此指令值一直保持,直至新的F指令值被执行。
示例:从直径Φ40切削到Φ60的程序指令程序:G01X60Z7F500;(绝对值编程)G01U20W-25;(相对值编程)G01X60W-25;(混合编程)G01U20Z7;(混合编程)3.4圆弧插补G02、G03指令功能:G02指令运动轨迹为从起点到终点的顺时针(后刀座坐标系)/逆时针(前刀座坐标系)圆弧,轨迹如图所示。
G03指令运动轨迹为从起点到终点的逆时针(后刀座坐标系)/顺时针(前刀座坐标系)圆弧,轨迹如图所示指令轨迹图:指令说明:G02、G03为模态G指令;R为圆弧半径mm;I为圆弧起点与圆心在X方向的差值,用半径表示;K为圆弧起点与圆心在Z方向的差值;圆弧中心用地址I、K指定,I、K表示从圆弧起点到圆心的矢量分量,是增量值;I=圆弧起始点的X-圆心坐标X坐标;K=圆弧起始点的Z-圆心坐标Z坐标;I、K根据方向带有符号,I、K方向与X、Z轴方向相同,则取正值;否则,取负值。
②.P、X、U在同一程序段,P有效;X、U在同一程序段,X有效。
3.6返回机械零点G28指令格式:G28X(U)Z(W);指令功能:从起点开始,以快速移动速度到达X(U)、Z(W)指定的中间点位置后再回机械零点。
指令说明:G28为非模态G指令;X:中间点X轴的绝对坐标;U:中间点与起点X轴绝对坐标的差值;Z:中间点Z轴的绝对坐标;W:中间点与起点Z轴绝对坐标的差值。
指令地址X(U)、Z(W)可省略一个或全部指令动作过程:(1)快速从当前位置定位到指令轴的中间点位置(A点→B点);(2)快速从中间点定位到参考点(B点→R点);(3)若非机床锁住状态,返回参考点完毕时,回零灯亮。
注1:手动回机械零点与执行G28指令回机械零点的过程一致,每次都必须检测减速信号与一转信号;注2:从A点→B点及B点→R点过程中,两轴是以各自独立的快速速度移动的,因此,其轨迹并不一定是直线;注3:执行G28指令回机械零点操作后,系统取消刀具长度补偿;注4:如果机床未安装零点开关,不得执行G28指令与返回机械零点的操作。
3.7工件坐标系设定G50指令格式:G50X(U)Z(W);指令功能:设置当前位置的绝对坐标,通过设置当前位置的绝对坐标在系统中建立工件坐标系(也称浮动坐标系)。
执行本指令后,系统将当前位置作为程序零点,执行回程序零点操作时,返这一位置。
工件坐标系建立后,绝对坐标编程按这个坐标系输入坐标值,直至再次执行G50时建立新的工件坐标系。
指令说明:G50为非模态G指令;X:当前位置新的X轴绝对坐标;U:当前位置新的X轴绝对坐标与执行指令前的绝对坐标的差值;Z:当前位置新的Z轴绝对坐标;W:当前位置新的Z轴绝对坐标与执行指令前的绝对坐标的差值;G50指令中,X(U)、Z(W)均未输入时,不改变当前坐标值,把当前点坐标值设定为程序零点;未输入X(U)或Z(W),未输入的坐标轴保持原来设定的程序零点。
示例:用G50设置坐标系前用G50设置坐标系后当执行指令段“G50X100Z150;”后,建立了如图所示的工件坐标系,并将(X100Z150)点设置为程序零点。
3.8固定循环指令为了简化编程,GSK980TD提供了只用一个程序段完成快速移动定位、直线/螺纹切削、最后快速移动返回起点的单次加工循环的G指令:G90:轴向切削循环;G92:螺纹切削循环;,G94:径向切削循环,G92螺纹切削固定循环指令在螺纹功能一节中讲述.本节主要讲述G90:轴向切削循环。
1、轴向切削循环G90指令格式:G90X(U)__Z(W)__F__;(圆柱切削)G90X(U)__Z(W)__R__F__;(圆锥切削)指令功能:从切削点开始,进行径向(X轴)进刀、轴向(Z轴或X、Z轴同时)切削,实现柱面或锥面切削循环。
指令说明:G90为模态指令;切削起点:直线插补(切削进给)的起始位置;切削终点:直线插补(切削进给)的结束位置;X:切削终点X轴绝对坐标,单位:mmU:切削终点与起点X轴绝对坐标的差值,单位:mm;Z:切削终点Z轴绝对坐标,单位:mm;W:切削终点与起点Z轴绝对坐标的差值,单位:mm;R:切削起点与切削终点X轴绝对坐标的差值(半径值),带方向,当R与U的符号不一致时,要求│R│≤│U/2│;R=0或缺省输入时,进行圆柱切削,否则进行圆锥切削,单位:mm。
循环过程:①X轴从起点快速移动到切削起点;②从切削起点直线插补(切削进给)到切削终点;③X轴以切削进给速度退刀,返回到X轴绝对坐标与起点相同处;④Z轴快速移动返回到起点,循环结束。
如果执行了除G04以外的非模态(00组)G指令或G00、G01、G02、G03、G32时,X(U)、Z(W)、R保持的指令值被清除。
2)在录入方式下执行固定循环指令时,运行结束后,必须重新输入指令才可以进行和前面同样的固定循环。
3)在固定循环G90~G94指令的下一个程序段紧跟着使用M、S、T指令,G90~G94指令不会多执行循环一次;下一程序段只有EOB(;)的程序段时,则固定循环会重复执行前一次循环动作。
例:…N010G90X20.0Z10.0F400;N011;(此处重复执行G90一次)…4)在固定循环G90、G94指令中,执行暂停或单段的操作,运动到当前轨迹终点后单段停止。
3.9多重循环指令GSK980TD的多重循环指令包括:轴向粗车循环G71、径向粗车循环G72、封闭切削循环G73、精加工循70、轴向切槽多重循环G74、径向切槽多重循环G75及多重螺纹切削循环G76。
系统执行这些指令时,根据编程轨迹、进刀量、退刀量等数据自动计算切削次数和切削轨迹,进行多次进刀→切削→退。