图8-1-3图8-1-2中的就是VS1断路器手车,它像个抽屉一样放在开关柜里,紫色框内就是轨道上的滑轮,红色框内是二次接线插头(处于拔下状态),绿色框内是断路器的动触头。图8-1-3中框内设备与8-1-2相同,二次接线插头处于插上位置。我们选用的模型是:微机保护选用南瑞RCS-9611A,开关柜选用常熟开关厂KZN1开关柜。(不同厂家的中置柜有各种各样稀奇古怪的型号)2.3RCS-9611ARCS-9611A是南瑞公司用于小电流接地系统线路的微机保护装置,配置三段式过流、三段式零序过流/小电流接地选线、重合闸。其电流电压回路如图8-2-1,操作回路如图8-2-2,开入量回路如图8-2-3。
图8-2-1(点击看大图)图8-2-1中可以看出,需要接入的模拟量是:母线电压、线路电压(几乎没有10kV线路会装设线路PT)、保护电流(三相,实际工程中10kV线路一般只配置两相CT)、测量电流(两相)、零序电流。
图8-2-2(点击看大图)图8-2-2中可以看出,这个操作回路比RCS-941的操作回路简单了很多。红色框内的设备(把手、压板)并不是RCS-9611的一部分,它们由开关柜厂家提供,安装在继电器室面板上。
图8-2-3(点击看大图)图8-2-3为装置的遥信回路。与110kV电压等级设备的保护装置不同,35/10kV设备的保护、测控是一体化设计,即整合在一个装置中。对比一下,在RCS-941A中,你肯定找不到测量电流、开关量输入回路,它需要CSI-200E之类的测控装置或常规控制屏与它配合来提供这些功能。2.4KZN1-12-04开关柜10kV线路一次设备主接线如图8-3-1所示,与架空线路相比,少了隔离开关、B相电流互感器,多了零序电流互感器TA。
图8-3-3(点击看大图)图8-3-3为电压回路,包括:保护电压(兼测量电压)、计量电压,均从柜顶小母线引下来。保护电压在进入保护装置前,必须经过一个空气开关,如图4QF。计量电压则不用。
图8-3-4(点击看大图)图8-3-4为操作回路,主要包括控制把手、微机操作回路与断路器机构的配合。图片有点小,请(点击看大图)。在很多简化画法中,断路器机构的合闸回路往往被画成图8-3-5中的样子:又“弹簧已储能S1常开”“断路器分闸DL常闭”“合闸线圈HQ”串联组成,或者加上“试验位置SW、运行位置YW常开并联”,以表示“断路器手车只有在试验位置和运行位置时才能合闸”。实际上,VS1断路器往往配有一个合闸闭锁电磁铁,它有一个手车行程开关(类似于一个继电器)控制,当手车处于试验位置、运行位置以外的位置时,电磁铁失电,其辅助接点断开合闸回路,这属于中置柜的电气闭锁(中置柜的电气闭锁还有许多,比如带电不能打开开关柜后门等)。10kV中置柜具有完善的电气闭锁及机械闭锁功能,在手车处于非试验/运行位置时,机械闭锁功能会自动完成对合闸操作的闭锁,所以不需要再在合闸回路里利用SW、YW进行闭锁。(试验位置S8、运行位置S9很多时候也被标成SW、YW以便理解)
图8-3-6(点击看大图)图8-3-6为开关量输入回路,对中置柜而言,最主要的信号包括:试验位置(S8常开)、运行位置(S9常开)、地刀合位(QE常开)、弹簧未储能(S1常闭)。断路器的位置可以不用接入,因为微机保护可以根据自身操作回路的HWJ、TWJ判别。综上所述,对二次设计而言,10kV开关柜是最省事的,只需要将零序电流引出至小电流接地选线装置即可,其余的二次接线都由厂家完成。配线图的看法,在此不再赘述,关键一点就是参照原理图,然后根据两个安装单位的编号互相对照即可。3、XGN开关柜的二次接线XGN开关柜为固定式开关设备,配置真空断路器(固定安装,不象中置柜那样可以利用手车拉出来),有独立的隔离开关,相当于把架空出线间隔的设备集中到一个开关柜里。XGN开关柜没有专门的二次接线插头,所有的二次配线都是通过控制电缆完成的。除了将开关量输入回路中“试验位置、运行位置”换成“上隔离1G合位、下隔离2G合位”外,它的二次接线与中置柜是一样的。
一、进、出车故障现在流行的高压开关设备通常都是手车(移开)式,就进出、车故障而言,往往都是并发症。也就是说,某开关手车如果发生进车操作困难、故障,则它的出车操作也不是很流畅、顺利的,也会发生相应的出车操作困难、故障。现就这类故障、缺陷的具体表现形式及对策列举如下。
这是某现场强行误操作损坏的联锁机构当接地开关合闸的时候,绝对不允许推进断路器,如果造成图片所示的损坏状况,断路器在运行位置时,将造成带电合接地的故障;
高压真空开关柜基础知识1.概述
在实际使用中多将真空断路器装入金属柜内,构成高压开关柜。开关柜中除了断路器之外,还要安装起隔离电路作用的隔离开关、起安全保障作用的接地开关、起测量或保护作用的电流互感器和电压互感器、起过电压保护作用的避雷器或RC吸收器,而且还要安装继电保护用的二次回路元件和线路,引接电缆或架空线都可以进入柜内,使开关柜成为一个有相对独立组合功能的配电装置。在发电厂的开关站、输电线路的变电站、接受电能的用户终端变电所中,都大量采用各种开关柜。
大约在10年之前,装有少油断路器的开关柜在全国几乎占居垄断地位,但随着真空断路器的兴起,少油开关拒逐步退居其次。自1993年提出"无油化改造"要求以来,更助长了这一趋势,有的省市甚至明令禁止在城市电网及重要用户的所、站建设中继续使用少油开关拒,而旧站则逐步用真空开关柜来取代少油开关柜。
目前我国真空开关柜方面的技术标准有:
GB3906-913~35kV交流金属封闭开关设备
DL404-91户内交流高压开关柜订货技术条件
开关拒的技术参数与断路器技术参数相仿,根据所装断路器的参数而定,唯一不同的是,开关拒额定电流根据主回路中各电器元件(例如隔离开关,或电流互感器)的最小额定电流取值。
2.高压真空开关拒的类型
高压真空开关柜,可有三种分类方式,每一类又有若干个基本类型,它们各有自己的特点。详见表1。
分类方式-基本类型-结构特点-优缺点:
按断路器安装方式-固定式:①断路器固定安装;②柜内装有隔离开关①柜内空间较宽敞,检修容易;②易于制造,成本较低;③安全性差;
移开式:断路器可随移开部件(手车)移出柜外;①断路器移出柜外,更换、维修方便;②省却隔离开关;③结构紧凑;④加工精度较高,价格贵些;
按柜内隔室的构成半封闭式:柜体正面、侧面封闭,柜体背面和母线不封闭:①结构简单,造价低;②安全性差。
箱式:隔室数目较少,或隔板防护等级低于IP1X:①母线也被封闭,安全性好些;②结构复杂一些,价格稍高。
间隔式:①断路器及其两端相连的元件均有隔室;②隔板由非金后板制成;①安全性更好些;②结构复杂,价格贵些;
铠装式:结构与间隔式相同,但隔板由接地金属板制成:①安全性最好;②结构更复杂,价格更高。
按柜内绝缘介质-空气绝缘:极间和极对地的绝缘靠空气间隙保证:①绝缘性能稳定;②造价低;③柜体体积大些。
复合绝缘:极间和极对地绝缘靠较小的空气间隙加固体绝缘材料来保证①柜体体积小,但防凝性能不够可靠;②造价高一些。
SF6气体绝缘:全部回路元件置于密闭以容器中,充入SF6气体①技术复杂②加工精度要求高;②价格高。
除了空气绝缘和复合绝缘之外,国外还有采用SF气体绝缘的开关拒。这种开关柜将整个导电回路,包括母线、隔离开关、真空断路器、电流、电压互感器、避雷器,甚至电线头等元件全部包容在一个密闭的柜体中,内充稍高于大气压力的SF气体,由SF作为绝缘介质,称为充气柜。其优点是体积缩小,与外部环境条件(如湿度、海拔高度、灰尘、雾、污秽等)完全没有关系,缺点是技术复杂、精度高、电器元件本身的可靠性要求极高,价格异常高昂。我国尚未有此类产品投放市场。
3.高压开关拒的技术要求
1)对相间及相对地的绝缘距离的要求;
2)对防凝露的爬电距离的要求;
归纳起来:实施五防功能方面,有非强制性的(a项)和强制性的(b、c、d、e项);有主动性防御和被动性防御。被动防御指采用高压带电显示装置,只是提示性的,不够可靠。主动防御大致可分三类:①采用机械联锁装置,用机械零部件来传动并产生约束,可靠性最高(除非零件损坏、断裂),宜优先推荐使用;②采用翻牌(插头)和机械程序销,可靠性稍逊,因锁与匙之间并非绝对-一对应;③采用电气联锁,可靠性又差一些,因为电磁锁和导线都有损坏的可能,而且也需电源供电(须与继保回路电源分开),但优点是可以长距离传送。
5)高压带电显示装置:在各类型开关柜中,经常使用高压带电显示装置。当主回路带有高压电时,它经过电容分压原理输出低压电压讯号,点燃氖灯,以灯光信号发出提示(也可以将低压讯号变换一下去控制电磁锁,构成强制性闭锁)。带电显示的感应元件多内藏于绝缘子或瓷瓶当中,后者还可起到支承作用。运行人员观察指示灯就可了解哪一段主回路在带电运行。在维护或测试柜内元件时,该提示信号更显得重要。高压带电显示装置本身价格不算高,约六七百元一套(三相),占整柜价格比例很少,而对人身安全保障的作用是不小的。虽然氖泡有时会损坏,但三相同时损坏的可能性极小。因此建议设计院设计的主回路结线时,适当地多绘过高压带电显示装置,如果主结线图末绘出,生产厂家一般不会主动加过去,因为工程计价时没有计入,必然减少生产利润。开关柜柜后面上一般都应有带电显示装置。
解决的办法是将下隔离开关整个独立出来加以封隔。如果是下部电缆进线的方式,则应另增一柜,此柜仅装入下隔离开关(即进线隔离开关),其出线则可用母排或高压电缆引向主进线断路器柜,当然还需要解决两柜的联锁以满足防误的功能(可考虑采用程序锁)。如果是架空线从后柜进线的话,则可将进线(下)隔离开关整个移置于后柜内,由主柜后铁板起封隔离作用,但此时后拒的深度必须加深。
7)长期发热载流能力:由于一次回路各电器元件处于密封的柜内空(半封闭柜除外)同时运行,各自发出热量,柜内空气温度必然比柜外环境温度高些,导致电器元件散热困难,温升增高。而且根据DL404--91标准的要求,开关柜应通得过110%额定电流值的温升试验。因此,柜内电器元件,除电流互感器因测量、保护之需要外,其他如断路器、隔离开关(或隔离插头)、套管等元件,均应选取比长期额定电流规格大一个档次的产品,比如柜体为630A时选用800A的、800A的选用1000A、1000A的选用1250A的电器元件等。
8)母线接触面处理:开关柜中有许多导电联接面,有电器元件出线端对母排的联接,也有母排对母排的联接。有电流时导电联接面会发热,发热量多少与电流密度有关,还与接触面的物理状态密切有关。
从微观角度来看,即使经过精细加工的接触面也是凸凹不平的,导电作用是通过若干个尖端碰触而实现的,非尖端部分则留有空气隙。潮湿空气中的水分,以及大气中的尘埃会渗入空气隙中,在发热和水分作用下接触表面会氧化和污秽,接触状态变差,接触电阻上升,发热量也就随之增加。所以电气联接面须有保护措施,最简易的办法是涂抹中性凡士林或导电膏,它们占据接头间的间隙,不让空气。水分和尘埃进入,减轻氧化程度。较好的办法是接触面镀锡。锡层质地软,在螺栓压力下产生延展,增加实际的电接触面积,而且锡不易被氧化。另外,在锡层保护下,接头的允许发热温度由90℃提高到105℃,颇有好处。
9)动稳定性:开关柜内的主母线和引下线,在有故障电流流过时产生较大的电动力,电动力大小与短路电流的平方成正比。电动力有两种:一种发生于三相母线之间,该作用力力图扩大和缩小三相母线间距离,方向交变,频率为工额的2倍;另一种产生于同相母线上,只要母线不在一条直线上,每一段彼此都有作用力,力的方向是力图使母线"板直"。
为了抗御电动力,母线需有足够的动稳定能力,这须借助支持绝缘子的支撑。一般来说,隔离开关的接线端板不要当作主要支撑力点,只可作辅助,当它参数较低时尤应如此。两个绝缘子之间的距离通常不应超过800mm。支持绝缘子有时可用高压带电显示绝缘子兼任。
10)开关柜柜体之间应有封隔:在变电所或开关站中,往往将许多面开关柜并列成为一排用主母线将各柜联结起来,构成配电网络。过去旧型开关柜母线室直接联通,中间无任何分隔或阻挡。这样当其中一台开关柜出现闪络故障时,电弧在将该拒烧毁的同时还要沿着联通的母线通道燃烧过去,接连烧毁一串开关柜,造成全站瘫痪停电,损失惨重,这种现象俗称"火烧连营"。为了防止"火烧连营",90年代之后除半封闭式(GG-1A(F))型固定柜之外,其余各型箱式、间隔式和铠装式开关柜都采取柜与柜之间分隔的措施,用接地金属板将每柜封隔,主母线则通过穿墙套管再联接起来。当某柜出现柜内故障,事故电弧移到母线室后不能随意纵向扩散,基本上局限于本柜内,对邻柜影响大大降低,更不会一连串地烧下去,减少了损失。当用母线槽连接两柜时,切记加装隔板和套管,
11)电缆头安装的高度:从底面进入柜内的电缆,多数穿越底板后再分岔,加上分相后外沿面也有绝缘要求,因此电缆头的安装点须有一定高度,通常以大于500mm为好。过低时,会给电缆头制作和施工安装带来困难,如须套装零序电流互感器时更感高度不够。
当两根及以上电缆并接时,分相电缆芯不能互相交错,须注意不同相电缆芯之间的绝缘距离,
12)开关柜应考虑或有降低内部故障措施:开关柜常见内部故障、产生原因和防止措施见下表:
容易产生内部故障的部位-内部故障可能产生的原因-措施举例:
断路器-维护不良、机构螺钉松动、绝缘裕度不足:定期按规定进行维护,制订规程、增加绝缘隔板;
隔离开关、负荷开关、接地开关:误操作、接触不良或发热严重加联锁,制订规程;精心研磨触头,细心调整,敷导电膏;
互感器-铁磁谐振:采用合适的电路设计,避免该类电效应;
电缆室:设计不当,选择合适的尺寸;
布置不当:避免电缆交叉连接,安装质量检查;
固体或液体绝缘的损坏(缺陷或流失):现场质量检查,进行绝缘耐压实验;
螺钉连接面和触头接触面:电化腐蚀、装配不当,使用防腐蚀被镇层或导电膏,检查装配质量;
五防联锁:失灵、位置松动,零件损坏;维护、例行检查时试操作,分析原因,更换零件;
所有的部位:工作人员的错误;用遮栏限制人员接近,带电部分以绝缘包裹,制订规程,张挂警示牌;
在电场作用下老化:例讨试验检查;
污染、潮气、灰尘和小动物的进入等:采取措施改进运行环境条件;
过电压:防雷保护,现场绝缘耐压试验,加邂雷器或RC吸收装置;