2.4电子、电气产品断续传导发射超标问题及对策
家电类产品断续传导骚扰标称测量频率范围148.5kHz-30MHz(实际为150kHz-30MHz)。
测量在电源端子上进行,喀呖声测量的频率点为:150kHz、500kHz、1.4MHz、30MHz
此类操作一般通过继电器和程控电子/机械开关等实现。
此类骚扰一般由继电器、开关的触点抖动及非纯阻负载通断所产生的电涌冲击形成。
可采用相对应的骚扰抑制措施主要针对以上两个方面进行。
2.5电子、电气产品辐射骚扰超标问题及对策
电子、电气产品辐射骚扰场强测量频率范围30MHz-1000MHz。
测量一般在开阔场或半电波暗室中进行。
开关电源的开关频率及谐波骚扰
交流电机的运行噪声、直流电机的电刷噪声
电磁感应设备的电磁骚扰
智能控制设备的晶振及数字电路电磁骚扰等
3.谐波电流测试常见问题对策及整改措施
对于由交流市电供电的电子、电气产品,谐波电流是一个很重要的电磁兼容测量项目。
在低压市电网络使用的电子电气设备,其供电电压是正弦波,但其电流波形未必是正弦波,可能有或多或少的畸变。大量的此类设备应用,会造成电网电压波形畸变,使电网电能质量下降。
一个周期函数可以分解为傅立叶级数,表示为多级正弦函数的和式,即可把周期信号当作是正弦函数的基波与高次谐波的合成。
所以,我们可以将设备的畸变电流波形分解为基波和高次谐波,通过特定的仪器测量高次谐波含量,就可以分析出设备电流波形畸变的程度。这些高次谐波电流分量我们简称为谐波电流。
图6:畸变电流波形的傅立叶展开示意图
当电网中存在过量的谐波电流,不仅会使发电机的效率降低,严重时还会造成发电机和电网设备的损坏,同时还会影响电网用户设备的正常工作,比如计算机运算出错,电视机画面翻滚。
正是出于保护共用电网电能质量,保障电网和用户设备的正常进行,IEC提出了谐波电流限值标准。
3.1测量标准介绍
下面以GB17625.1标准为例,对谐波电流的测量作一个简要介绍。
GB17625.1-2003是众多电子电器产品认证检验的一个重要依据标准。该标准测量和限制的就是由低压市电供电的电子、电气产品(设备每相输入电流≤16A)在使用时其供电电流波形畸变的程度。
GB17625.1-2003标准是通过限制设备电流的高次谐波分量的大小来限制设备电流波形的畸变的。GB17625.1考虑到第40次谐波电流含量。
3.1.1标准的适用范围
该标准只对接入频率为50Hz/60Hz、相电压为220V/230V/240V的低压供电系统且每相输入电流不大于16A的设备提出谐波电流限值要求。
该标准是一个通用电磁兼容标准。适合于本标准的产品类别较多,如家用电器、电动工具、电气照明设备、信息技术设备、影音设备等等。
3.1.2设备的分类
分类是按照谐波电流限值不同而进行的。
A类:平衡的三相设备;
家用电器,不包括列入D类的设备;
工具,不包括便携式工具;
白炽灯调光器;
以及除以下几类设备外的所有其他设备。
B类:便携式工具;不属于专用设备的电弧焊设备
C类:照明设备
D类:有功功率不大于600W下列设备:个人计算机和个人计算机显示器;电视接收机。
B类、C类和D类设备定义比较简单,A类的区分比较复杂。
3.1.3谐波电流限值
下列类型设备的限值在该标准中未作规定:
额定功率75W及以下的设备,照明设备除外(将来该值可能从75W减小到50W);
总额定功率大于1kW的专用设备;
额定功率不大于200W的对称控制加热元件;
额定功率不大于1kW的白炽灯独立调光器。
(通常有生产厂家利用此条的限制项来达到免于进行谐波电流限制的目的)
3.1.3.1A类设备的谐波电流限值
3.1.3.2B类设备的谐波电流限值
B类设备的谐波电流限值是A类设备的限值的1.5倍。
3.1.3.3C类设备的谐波电流限值
a)有功输入功率大于25W
b)有功输入功率不大于25W
对于有功功率不大于25W的放电灯,标准规定了其特定的合格判定条件。
3.1.3.4D类设备的谐波电流限值
a)只限制奇次谐波电流。
b)奇次谐波电流不仅要符合最大允许谐波电流,还要符合“每瓦功率允许的最大谐波电流”。
可以说对D类设备的要求是比较严格的,而实际情况却是D类设备的谐波电流往往比较大。
该规定是考虑到D类设备应用非常广泛,又经常是连续运转,客观上又经常同时使用。如此多的D类设备同时工作,它们产生的谐波电流在合成(矢量合成)后对电网电能质量的影响将是不能不考虑的。
3.1.4谐波电流测量仪器
谐波测量设备一般由两部分组成:精密电源单元与测量仪表单元。
要求电源部分能向被测设备提供良好波形的电压源、负载能力和平坦的阻抗特性。
标准规定测量仪表单元必须是离散付氏变换(FFT)的时域测量仪器,能够连续、准确地同时测量全部各次谐波所涉及的幅值、相位角等需要量。
目前实验室多采用以FFT为频谱分析原理的谐波测量仪。测量仪的前级为采样电路、模-数变化器,后级是FFT分析仪(可以利用PC机实现)。
3.1.5试验条件
标准中规定了部分类型设备谐波电流的试验条件。
对于没有提到的设备,发射测量应在用户操作控制下或自动程序设定在正常工作状态下,预计产生最大总谐波电流(THC)的模式进行。
这是规定了发射试验时设备的配置,而不是要求测量THC值或寻找最恶劣状态下的发射。
3.2谐波电流发射的基本对策
功率因数校正一般分为两种类型,即主动式和被动式。
当然对于中小功率的电子、电器设备,尽可能将其消耗的有功功率降低到75W以下,也不失为一种有效的方法。因为标准没有对75W及以下的设备给出限值(照明设备除外)。
对于一些专用的或特殊用途的设备,使其满足标准限值中免于限制条款,也是可行的。
3.2.1主动式功率因数校正
主动式功率因数校正电路可以最大限度的提高功率因数,使其接近于1,这是目前较为理想的谐波电流解决方案。
这样的开关电源电路必须使用二级开关电路控制,其中一级开关电路用来控制电流谐波,另外一级开关电路用作电压调整。
该方案电路比较复杂,对电路元件要求高,增加的改进成本较高,而且对原来电源电路的设计概念必须作彻底的更新。
显然,因为技术的原因,该方案一般不能应用在采用线形电源变压器供电的设备上。
由于该方案对电路改动太大,一般少在谐波电流测试不通过时作为整改对策使用。