原创解析:大数据分析中的数据清洗与特征工程实践精髓开发网

随着大数据时代的到来,数据分析已经成为企业决策的重要依据。而在数据分析的过程中,数据清洗和特征工程是两个至关重要的环节。本文将深入探讨这两个环节的实践技巧,帮助读者更好地理解和应用大数据分析。

一、数据清洗

数据清洗是数据分析的第一步,其目的是为了去除数据中的噪声和异常值,以保证分析结果的准确性。在实践中,我们通常需要进行以下几个步骤:

1.数据探查:通过绘制图表、计算统计量等方式,了解数据的分布、趋势和异常值,为后续的数据清洗提供依据。

2.缺失值处理:对于缺失的数据,需要根据实际情况进行填充。常用的方法有:用均值、中位数、众数等填充;用模型预测填充;或者删除含有缺失值的记录。

3.异常值处理:异常值可能会对分析结果产生重大影响。常用的处理方法有:用均值、中位数、众数等填充;或者根据业务背景进行人工干预。

4.格式转换:根据分析的需要,将数据转换成合适的格式。例如:将字符串转换成日期格式,将分类数据转换成数值型等。

AI图片成果,仅供参考

特征工程是数据分析中最为关键的环节之一,其目的是为了提取和构造能够提高模型性能的特征。在实践中,我们通常需要进行以下几个步骤:

2.特征构造:通过数学变换、函数运算等方式,构造新的特征。例如:对数变换、幂变换、傅里叶变换等。

3.特征缩放:对于不同尺度的特征,需要进行适当的缩放,以避免特征之间的尺度差异对模型的影响。常用的方法有:归一化、标准化、离散化等。

4.特征离散化:将连续的特征值离散化,以便于分类模型的训练。常用的方法有:分箱、决策树、卡方等方法。

在实际应用中,数据清洗和特征工程是相辅相成的。只有经过适当的数据清洗,才能保证特征的质量和有效性;只有构造出高质量的特征,才能提高模型的性能和预测精度。因此,在实际操作中,我们需要根据实际情况灵活运用这两种技术,以达到最佳的分析效果。

(编辑:开发网_商丘站长网)

建议您使用1920×1080分辨率、谷歌浏览器GoogleChrome、MicrosoftEdge以获得本站的出色浏览效果

THE END
1.数据也能做大扫除?为什么要做数据清洗?一、什么是数据清洗 数据清洗是在数据处理和分析之前,对数据集进行清理和整理的过程。这个过程包括识别并纠正错误的、不完整的、不准确的、不相关的或者是重复的数据,以确保数据的质量和准确性。数据清洗的目的是提高数据的质量,使其更适合进行数据分析或数据挖掘。 https://mp.weixin.qq.com/s?__biz=MzU3OTg5Njk2NA==&mid=2247498023&idx=2&sn=265853ec856d1b49af66c5dd7dc4bbb0&chksm=fd5daaccca2a23dabd78a08866b64f6ce2fabe0f71ad5b8cd2149273286cc43b6042550f7a59&scene=27
2.大数据什么是数据清洗?(附应用嘲及解决方案)FineDataLink提供了丰富的数据清洗功能,帮助用户高效地进行数据处理。以下是FDL中可用于数据清洗的主要功能: 1. 数据过滤 当用户需要进行空值、重复值过滤,或是筛选出符合目标的值以进一步处理时,可以直接使用「数据转换」中的数据过滤功能进行数据处理。这是数据清洗中非常基础且常用的功能,有助于提高数据的质量和可用https://blog.csdn.net/oOBubbleX/article/details/140350709
3.基于matlab进行数据分析matlab数据分析方法数据清洗 主要工作是删除原始数据集中的无关数据、重复数据、平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值、异常值等。 缺失值处理:一般可删除记录、数据插补和不处理。数据插补常用方法如下: 其中,插值法有Hermite插值、分段插值、样条插值法,而最主要的有拉格朗日插值法和牛顿插值法。 https://blog.51cto.com/u_16099302/9353652
4.数据治理知识分享—数据元主数据参考标准指标数据业务术语07、数据清洗 依据标准对存量主数据开展清洗工作,清洗过程除了基于质量规则对已有不规范数据进行属性补充、规范化填写以外,更重要的是识别重复的数据、对重复数据进行去重及合并,数据层面主要通过新旧编码映射的方式确保旧编码的业务正常开展。 08、数据共享 存量数据的共享,主要通过初始化导入方式开展;增量数据的共享,主要https://www.asktempo.com/news/industry-information/1461.html
5.大数据毕设基于Hadoop的音乐推荐系统的设计和实现(六)数据清洗是将拿到的一定格式的数据进行脏数据的清洗工作,把不需要的数据列信息给清洗掉,并且对数据进行存储。由于本次的数据是进行模拟产生的,所以数据的清洗功能比较简单就是实现主要是对数据进行的清洗操作时将不需要的数据列信息清洗掉以方便后面数据的处理过程,也就是让后面不用存储那么多数据和处理那么多数据,这样https://developer.aliyun.com/article/1404874
6.感悟与反思┃“数据清洗工作”的总结与反思——席义博当时告诉大家把每遇到一次报错,都做一系列整理工作,包括问题描述、截图、出错的源文件处理等等,之后还涉及到类似“断点续传”的操作,如果每次出错都重新来过,数据清洗的效率将大大降低。这么过了几天,对大家的报错情况基本都有数儿了,我虽说不清楚为什么,但至少能清楚地描述出“当如何如何时”就会有“报错”,也许http://www.sxmu.edu.cn/bdcd/info/1097/1393.htm
7.数据清洗的步骤是什么(上)数据清洗工作是数据分析工作中不可缺少的步骤,这是因为数据清洗能够处理掉肮脏数据,如果不清洗数据的话,那么数据分析的结果准确率会变得极低。另外数据清洗工作占据数据分析工作整个过程的七成以上的时间,所以说我们要格外的重视数据清洗工作,那么数据清洗的步骤是什么呢?下面我们就给大家解答一下这个问题。 https://www.cda.cn/view/26802.html
8.数据分析是什么工作内容数据分析是什么工作内容 数据分析的工作内容包括:数据体系的搭建、数据清洗、数据预处理、可视化展示。(1)数据体系的搭建:每一个产品的功能都需要通过数据来监控这个功能的使用情况,包括用户量的变化情况使用的体验情况,业务的健康情况,业务的机会点等。所以在公司或者企业内部都会建立起一套相对应的叫做数据体系的东西https://36kr.com/p/dp1517207321827335
9.数据分析的流程是怎样的数据分析主要有八个流程:1、目标的确定;2、数据获取;3、数据清洗;4、数据整理;5、描述分析;6、将数据展现和输出;7、洞察结论;8、报告撰写。 1、目标的确定 只有弄清分析的目的是什么?才能准确定位分析因子,提出有价值的问题,提供清晰的思路。 这一步在工作中通常是由你的客户/上级/其他部门同事/合作方提出来https://www.linkflowtech.com/news/626
10.牛笔了,我用Python画了一个生日蛋糕,成功赢得了女友的芳心!数据库连接可用于连接众多数据库以及访问通用数据库接口,可用于数据库维护、管理和增、删、改、查等日常操作。 04 数据清洗转换 数据清洗转换主用于数据正式应用之前的预处理工作。 05 数据计算和统计分析 数据计算和统计分析主要用于数据探查、计算和初步数据分析等工作。 https://www.jianshu.com/p/59a8e49b8cf0
11.大数据处理流程中数据清洗工作是在()阶段完成。大数据处理流程中数据清洗工作是在()阶段完成。 "大数据处理流程中数据清洗工作是在()阶段完成。"这道题的答案是什么呢,答案在下文中哦。 大数据处理流程中数据清洗工作是在()阶段完成。 A.数据采集 B.数据预处理和导入 C.数据存储和管理 D.数据分析和挖掘https://www.duote.com/tech/tiku/279635.html
12.数据治理:如何实施数据清洗,提升数据质量?一、什么是数据清洗?在数据治理工作中,为了彻底解决企业的数据质量历史遗留问题(数据不一致、不完整、不合规、数据冗余等),必须对存量数据进行改造,实施“数据清洗”工作。“数据清洗(Data cleaning)”一词,是数据治理领域中的专业术语。从字面意义上理解,“数据清洗”就是将数据上“脏”的部分清洗干净,让https://baijiahao.baidu.com/s?id=1738204692952251565&wfr=spider&for=pc
13.engineering):利用领域知识和现有数据,创造出新的特征,用于文章主要介绍了特征工程的相关内容,包括特征工程的定义、重要性,以及特征理解、清洗、构造、选择、变换和降维等方面。具体涵盖了结构化与非结构化、定量与定性数据的区分,数据清洗中的数据对齐、缺失值处理、异常值处理等方法,特征构造中的统计量构造、周期值、数据分桶、特征组合,特征选择的三种形式及多种具体方法,特https://juejin.cn/post/6874516288149028872