机器学习中的数据清洗与特征处理综述

随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团购系统中大量地应用到了机器学习和数据挖掘技术,例如个性化推荐、筛选排序、搜索排序、用户建模等等,为公司创造了巨大的价值。

本文主要介绍在美团的推荐与个性化团队实践中的数据清洗与特征挖掘方法。主要内容已经在内部公开课”机器学习InAction系列”讲过,本博客的内容主要是讲座内容的提炼和总结。

如上图所示是一个经典的机器学习问题框架图。数据清洗和特征挖掘的工作是在灰色框中框出的部分,即“数据清洗=>特征,标注数据生成=>模型学习=>模型应用”中的前两个步骤。灰色框中蓝色箭头对应的是离线处理部分。主要工作是-从原始数据,如文本、图像或者应用数据中清洗出特征数据和标注数据。-对清洗出的特征和标注数据进行处理,例如样本采样,样本调权,异常点去除,特征归一化处理,特征变化,特征组合等过程。最终生成的数据主要是供模型训练使用。

灰色框中绿色箭头对应的是在线处理的部分。所做的主要工作和离线处理的类似,主要的区别在于1.不需要清洗标注数据,只需要处理得到特征数据,在线模型使用特征数据预测出样本可能的标签。2.最终生成数据的用处,最终生成的数据主要用于模型的预测,而不是训练。在离线的处理部分,可以进行较多的实验和迭代,尝试不同的样本采样、样本权重、特征处理方法、特征组合方法等,最终得到一个最优的方法,在离线评估得到好的结果后,最终将确定的方案在线上使用。另外,由于在线和离线环境不同,存储数据、获取数据的方法存在较大的差异。例如离线数据获取可以将数据存储在Hadoop,批量地进行分析处理等操作,并且容忍一定的失败。而在线服务获取数据需要稳定、延时小等,可以将数据建入索引、存入KV存储系统等。后面在相应的部分会详细地介绍。

本文以点击下单率预测为例,结合实例来介绍如何进行数据清洗和特征处理。首先介绍下点击下单率预测任务,其业务目标是提高团购用户的用户体验,帮助用户更快更好地找到自己想买的单子。这个概念或者说目标看起来比较虚,我们需要将其转换成一个技术目标,便于度量和实现。最终确定的技术目标是点击下单率预估,去预测用户点击或者购买团购单的概率。我们将预测出来点击或者下单率高的单子排在前面,预测的越准确,用户在排序靠前的单子点击、下单的就越多,省去了用户反复翻页的开销,很快就能找到自己想要的单子。离线我们用常用的衡量排序结果的AUC指标,在线的我们通过ABTest来测试算法对下单率、用户转化率等指标的影响。

在确定好要使用哪些数据之后,我们需要对使用数据的可用性进行评估,包括数据的获取难度,数据的规模,数据的准确率,数据的覆盖率等,-数据获取难度例如获取用户id不难,但是获取用户年龄和性别较困难,因为用户注册或者购买时,这些并不是必填项。即使填了也不完全准确。这些特征可能是通过额外的预测模型预测的,那就存在着模型精度的问题。-数据覆盖率数据覆盖率也是一个重要的考量因素,例如距离特征,并不是所有用户的距离我们都能获取到。PC端的就没有距离,还有很多用户禁止使用它们的地理位置信息等。用户历史行为,只有老用户才会有行为。用户实时行为,如果用户刚打开app,还没有任何行为,同样面临着一个冷启动的问题。-数据的准确率单子质量,用户性别等,都会有准确率的问题。

Ok,在选定好要用的特征之后,我们需要考虑一个问题。就是这些数据从哪可以获取?只有获取了这些数据我们才能用上。否则,提一个不可能获取到的特征,获取不到,提了也是白提。下面就介绍下特征获取方案。-离线特征获取方案离线可以使用海量的数据,借助于分布式文件存储平台,例如HDFS等,使用例如MapReduce,Spark等处理工具来处理海量的数据等。

出于性能考虑。在粗排阶段,使用更基础的特征,数据直接建入索引。精排阶段,再使用一些个性化特征等。

特征数据只有在和标注数据合并之后,才能用来做为模型的训练。下面介绍下如何清洗标注数据。主要是数据采样和样本过滤。

数据采样,例如对于分类问题:选取正例,负例。对于回归问题,需要采集数据。对于采样得到的样本,根据需要,需要设定样本权重。当模型不能使用全部的数据来训练时,需要对数据进行采样,设定一定的采样率。采样的方法包括随机采样,固定比例采样等方法。

除了采样外,经常对样本还需要进行过滤,包括-1.结合业务情况进行数据的过滤,例如去除crawler抓取,spam,作弊等数据。-2.异常点检测,采用异常点检测算法对样本进行分析,常用的异常点检测算法包括-偏差检测,例如聚类,最近邻等。-基于统计的异常点检测算法例如极差,四分位数间距,均差,标准差等,这种方法适合于挖掘单变量的数值型数据。全距(Range),又称极差,是用来表示统计资料中的变异量数(measuresofvariation),其最大值与最小值之间的差距;四分位距通常是用来构建箱形图,以及对概率分布的简要图表概述。-基于距离的异常点检测算法,主要通过距离方法来检测异常点,将数据集中与大多数点之间距离大于某个阈值的点视为异常点,主要使用的距离度量方法有绝对距离(曼哈顿距离)、欧氏距离和马氏距离等方法。-基于密度的异常点检测算法,考察当前点周围密度,可以发现局部异常点,例如LOF算法

在分析完特征和标注的清洗方法之后,下面来具体介绍下特征的处理方法,先对特征进行分类,对于不同的特征应该有不同的处理方法。

根据不同的分类方法,可以将特征分为(1)Lowlevel特征和Highlevel特征。(2)稳定特征与动态特征。(3)二值特征、连续特征、枚举特征。

Lowlevel特征是较低级别的特征,主要是原始特征,不需要或者需要非常少的人工处理和干预,例如文本特征中的词向量特征,图像特征中的像素点,用户id,商品id等。Lowlevel特征一般维度比较高,不能用过于复杂的模型。Highlevel特征是经过较复杂的处理,结合部分业务逻辑或者规则、模型得到的特征,例如人工打分,模型打分等特征,可以用于较复杂的非线性模型。Lowlevel比较针对性,覆盖面小。长尾样本的预测值主要受highlevel特征影响。高频样本的预测值主要受lowlevel特征影响。

在对特征进行分类后,下面介绍下对特征常用的处理方法。包括1.特征归一化,离散化,缺省值处理。2.特征降维方法。3.特征选择方法等。

在介绍特征降维之前,先介绍下特征升维。在机器学习中,有一个VC维理论。根据VC维理论,VC维越高,打散能力越强,可容许的模型复杂度越高。在低维不可分的数据,映射到高维是可分。可以想想,给你一堆物品,人脑是如何对这些物品进行分类,依然是找出这些物品的一些特征,例如:颜色,形状,大小,触感等等,然后根据这些特征对物品做以归类,这其实就是一个先升维,后划分的过程。比如我们人脑识别香蕉。可能首先我们发现香蕉是黄色的。这是在颜色这个维度的一个切分。但是很多东西都是黄色的啊,例如哈密瓜。那么怎么区分香蕉和哈密瓜呢?我们发现香蕉形状是弯曲的。而哈密瓜是圆形的,那么我们就可以用形状来把香蕉和哈密瓜划分开了,即引入一个新维度:形状,来区分。这就是一个从“颜色”一维特征升维到二维特征的例子。

那问题来了,既然升维后模型能力能变强,那么是不是特征维度越高越好呢?为什么要进行特征降维&特征选择?主要是出于如下考虑:1.特征维数越高,模型越容易过拟合,此时更复杂的模型就不好用。2.相互独立的特征维数越高,在模型不变的情况下,在测试集上达到相同的效果表现所需要的训练样本的数目就越大。3.特征数量增加带来的训练、测试以及存储的开销都会增大。4.在某些模型中,例如基于距离计算的模型KMeans,KNN等模型,在进行距离计算时,维度过高会影响精度和性能。5.可视化分析的需要。在低维的情况下,例如二维,三维,我们可以把数据绘制出来,可视化地看到数据。当维度增高时,就难以绘制出来了。在机器学习中,有一个非常经典的维度灾难的概念。用来描述当空间维度增加时,分析和组织高维空间,因体积指数增加而遇到各种问题场景。例如,100个平均分布的点能把一个单位区间以每个点距离不超过0.01采样;而当维度增加到10后,如果以相邻点距离不超过0.01小方格采样单位超一单位超正方体,则需要10^20个采样点。

正是由于高维特征有如上描述的各种各样的问题,所以我们需要进行特征降维和特征选择等工作。特征降维常用的算法有PCA,LDA等。特征降维的目标是将高维空间中的数据集映射到低维空间数据,同时尽可能少地丢失信息,或者降维后的数据点尽可能地容易被区分-PCA算法通过协方差矩阵的特征值分解能够得到数据的主成分,以二维特征为例,两个特征之间可能存在线性关系(例如运动的时速和秒速度),这样就造成了第二维信息是冗余的。PCA的目标是发现这种特征之间的线性关系,并去除。

主要分为产生过程,评估过程,停止条件和验证过程。

其他如双向搜索(BDS,BidirectionalSearch),序列浮动选择(SequentialFloatingSelection)等

随机算法共同缺点:依赖随机因素,有实验结果难重现。

在发现特征出现异常时,我们会及时采取措施,对服务进行降级处理,并联系特征数据的提供方尽快修复。对于特征数据生成过程中缺乏监控的情况也会督促做好监控,在源头解决问题。

THE END
1.数据处理和分析之数据预处理:数据清洗项目案例分析与实践数据清洗,也称为数据清理,是数据预处理过程中的关键步骤,旨在识别和纠正数据集中的错误、不一致和遗漏。这一过程对于确保数据分析的准确性和可靠性至关重要。数据清洗涉及多种技术和算法,用于检测和处理数据中的质量问题,包括但不限于缺失值、异常值、重复记录和格式不一致等问题。 https://blog.csdn.net/2401_87715305/article/details/142836939
2.数据清洗的概念及实战案例(配图)!!!51CTO博客# 数据分析的过程和别的过程没什么区别 只要明确思路 其他都不难 拿做菜举例 # 类比定义 数据分析过程 做菜过程 明确需求 明确做什么菜品 收集采集 去菜市场买菜 数据清洗 洗菜切菜配菜 数据分析 炒菜 数据报告 + 数据可视化 拍照发朋友圈吃 # 专业定义 https://blog.51cto.com/u_15127637/4278148
3.数据清洗案例分析袋鼠社区数据清洗案例分析 - 在大数据时代,数据已经成为企业的重要资产。然而,原始数据往往存在许多问题,如缺失值、异常值、重复值等,这些问题会影响数据分析的准确性和可靠性。因此,数据清洗成为了数据处理过程中不可或缺的一步。本文将通过一个实际的数据清洗案例,详细介绍https://www.dtstack.com/bbs/article/12691
4.国外客商数据清洗示例不完整的数据会污染数据库,降低其业务质量。 数据清洗,通常也称为数据清理,实际上不是对数据库的单个活动,而是涉及多种技术使用的整个过程。他们的目标是:拥有一个干净、可靠、一致和完整的数据库。干净的数据无非就是高质量的数据,我们可以信任的数据,并可以根据这些数据做出正确的决策。在商业领域,据估计每年有25https://36kr.com/p/2707385155614849
5.数据清洗? 清理数据 3 例子 数据清洗 编辑 数据清理,包括用于删除和更正数据库或其他信息系统中数据错误的各种方法。 例如,错误可能包括不正确的(最初是错误的或过时的)、冗余的、不一致的或格式错误的数据。 数据清洗的基本步骤是重复检测(相同数据集的检测和合并)和数据融合(合并和补全不完整的数据)。 数据清洗是对提https://vibaike.com/347397/
6.数据仓库中的数据清洗(精选十篇)运用数据仓库技术对各类水利业务系统中产生的海量信息进行综合分析处理,实现宏观统计数据与详细业务数据之间的联系。通过数据仓库逻辑模型的设计与实现,从综合数据库或外部系统中抽取数据进行数据清洗、转换,并装载到数据仓库中等过程,方便快速地为水利系统各行业提供统计分析信息,并可对信息进行多维统计分析,通过OLAP和数据挖https://www.360wenmi.com/f/cnkeykil00hn.html
7.如何进行数据清洗和预处理?如何进行数据清洗和预处理? 收藏 在数据分析和机器学习任务中,数据清洗和预处理是非常重要的步骤。这些过程可以帮助我们从原始数据中提取有价值的信息,并减少由于数据质量问题导致的误差和偏差。 本文将介绍数据清洗和预处理的基本步骤和技术,并提供一些实践建议和例子。https://www.cda.cn/bigdata/202679.html
8.数据清洗HRTechChina.com如何清洗人力资源分析数据?给你6个详细的步骤指南!数据清理是人力资源分析中的关键因素。在你分析数据之前,你需要对数据进行 "清洁"。在这篇数据清理指南中,我们将解释为什么数据清理很重要,以及你如何进行数据清理。在文章的底部,我们附上了一个有用的数据清洗信息图。 在数据分析中常说的一句话是。"垃圾进,垃圾https://www.hrtechchina.com/tag/%E6%95%B0%E6%8D%AE%E6%B8%85%E6%B4%97/
9.机器学习数据清洗之识别异常点数据是现代社会中的一种宝贵资源,但在利用数据之前,我们需要进行数据清洗以确保数据的质量和准确性。 异常值是数据中常见的问题之一,它们可能会对分析和建模产生负面影响,因此识别和处理异常值是数据清洗过程中的重要步骤之一。 本文将介绍异常值的概念、危害以及与缺失值的比较,并探讨了多种识别异常值的方法,包括基于https://www.jianshu.com/p/6676be6cdae4
10.SPSS分析实战数据清洗数据-标识异常个案模块来操作,这部分是通过算法来查找异常值,只能作为参考,而不能作为唯一标准。比如我们举的这个例子,这几个样本都不算异常。 算法基本原理 聚类:将所有个案分为若干类 评分:对每一个个案在其所属类别的异常度进行评分,并计算相应的异常Index 报告:对每一个异常个案,列出导致异常的具体变量的情况https://www.medsci.cn/article/show_article.do?id=83631855e8d6
11.手把手教你搞定4类数据清洗操作腾讯云开发者社区3)以其他变量的计算结果填充缺失值。举个最简单的例子:年龄字段缺失,但是有屏蔽后六位的身份证号信息,那么就可以轻松找出出生年月,算出目前年龄。 4)以业务知识或经验推测填充缺失值。 4. 重新取数 如果某些变量非常重要同时缺失率高,那就需要和取数人员或业务人员进行沟通,了解是否有其他渠道可以取到相关数据。https://cloud.tencent.com/developer/article/1955170
12.大厂的调查问卷如何设计样本填答调查者被访者无意义的分类不但不能帮助完成调研目标,还会增加后期分析数据的任务量。 举个例子:性别在以消费为核心的产品中会有明显的区别,男性和女性就是两个相异的群体,应该进行分群,但是在某些工具类的APP中,或许就没那么必要了。 3. 了解行业情况 阅读相关的行业研究报告或做竞品分析研究,通过吸取现有的经验和教训,可以提https://www.163.com/dy/article/H73PNDPF0511805E.html
13.如何用Excel实现多重条件匹配与分段计价2、生成的Excel不能直接使用,需要数据清洗。大概就是: a、去掉样式,去掉空白行列。 b、替换无法识别的字符,数据转为纯数字。 c、从文本中识别数据,比如要将9行和11行的包裹类型、长、宽、高提取出来,转化为我们需要的标准化数据表格式,这种格式能够被函数识别并匹配包裹类型和报价。 https://www.douban.com/note/815266757/
14.研究生学术训练营之信息素养系列回顾(2018Python进阶之数据爬取与清洗(海南医学院副教授 余本国) 内容提要:本节课开始以统计美剧《老友记》英语台词词频的案例,对上节课关于模块的应用进行了复习,随后老师以上海外国语贴吧和研究生讲座网站为例,为同学们展示了如何利用Python快速爬取网页上的文本及数据。 https://wmcj.shisu.edu.cn/1a/15/c990a137749/page.htm
15.深入浅出数据科学很多人是某一个(或者两个)领域的专家,但合理地使用数据科学需要同时精通以上3个领域。我们将深入讨论这3个领域并解决复杂的问题。我们将清洗、探索和分析数据,得出科学、准确的结论。我们还将利用机器学习和深度学习技术解决更加复杂的数据问题。 本书涵盖的内容 第1章:如何听起来像数据科学家。本章将介绍数据科学https://labs.epubit.com/bookDetails?id=N8339