高级大数据工程师分析Hollahpain

2.熟悉Hadoop/Spark/Hive/HBase等大数据工具,主导过大型数据平台建设者优先。

3.精通SQL,熟悉常用的关系型数据库、非关系性数据库和数据仓库,具有SQL性能优化经验。

4.了解微服务开发理念、实现技术,熟悉常见设计模式,熟练掌握SSH开发框架,熟练进行Java、Python代码编写,熟悉多线程编程。

2、高级大数据工程师的职责

1.负责数据平台产品的整体评估.设计.架构及关键模块的开发,结合公司实际业务情况进行技术选型,并实现需求的开发实现-根据业务需求进行系统模块的划分。

3.负责架构优化及系统关键模块的设计开发,参与解决大数据基础架构项目中的关键架构问题和技术难题,负责项目中关键技术难点的攻关。

4.参与数据开发规范制定.并配合公司产品线业务拓展,可满足业务应用的大数据处理需求。

5.参与公司多个产品线的大数据平台标准化的设计和研发,并从事离线/实时数据仓库建设.设计.优化和落地。

6.能处理海量数据,同时对安全大数据的关键技术有理解和认识;通过良好的逻辑思维能力对数据有一定敏感能力,能够从海量数据中发现有价值的规律。

7.负责核心代码的编写,组织并指导各团队(自有及合作)开发及解决出现的系统和产品问题,并负责模块调优,接口设计及开发等。

3、工作内容

1.大数据开发主要有以下几个阶段:

数据采集、数据清洗、数据存储、数据分析统计、数据可视化。大数据工程师的工作内容就是用工具组件或者代码来实现上面几个方面的功能,除此之外,大数据工程师还负责大数据平台的搭建与维护。

大数据工程师每天的工作内容主要有数据采集、数据处理、数据迁移、数据可视化、维护大数据平台等。

2.数据采集:

业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。

3.数据清洗:

原始的日志,数据是千奇百怪的

一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。

一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。

一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。

4.数据存储:

清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。

5.数据分析统计:

数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。

6.数据可视化:

用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据

大数据处理技术涉及面非常广,主要有分布式计算、高并发处理、高可用处理、集群、实时性计算等,所以大数据工程师也要掌握这些技能。

二、岗位要求

那么想要成为合格的大数据工程师主要需要学习Java基础、JavaEE核心、Hadoop生态体系、Spark生态体系、机器学习等一系列知识。

大数据工程师需要掌握Java编程、linux基础操作命令、hadoop、HBase、Hive、ZooKeeper、phoenix、Avro与Protobuf、Cassandra、Kafka、Chukwa、Flume等知识。

需要掌握的主要技术如下:

(1)文件存储:HadoopHDFS、Tachyon、KFS

(2)离线计算:HadoopMapReduce、Spark

(3)流式、实时计算:Storm、SparkStreaming、S4、Heron

(4)K-V、NOSQL数据库:HBase、Redis、MongoDB

(5)资源管理:YARN、Mesos

(6)日志收集:Flume、Scribe、Logstash、Kibana

(7)消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

(8)查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

(9)分布式协调服务:Zookeeper

(10)集群管理与监控:Ambari、Ganglia、Nagios、ClouderaManager

(11)数据挖掘、机器学习:Mahout、SparkMLLib

(12)数据同步:Sqoop

(13)任务调度:Oozie

1.高级大数据专业技术等级证书

证书介绍:

CDA等级一:业务数据分析师。需要掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。

CDA等级三:数据分析专家。需要掌握CDALevelⅡ的所有理论及技术要求,还应了解计算机技术,软件开发技术,大数据分析架构及企业战略分析方法,能带领团队完成不同主题数据的有效整合与管理。对行业、业务、技术有敏锐的洞察力和判断力,为企业发展提供全方面数据支持。

2.阿里云大数据认证

是面向使用阿里云大数据产品的架构、开发、运维类人员的专业技术认证,主要涉及阿里云大数据类的几款核心产品,包括大数据计算服务MaxCompute、数据工场DataWorks、数据集成、QuickBI、机器学习PAI等。

3.华为HCIA-BIGData认证

4.ClouderaApacheHadoop开发者

CCDH认证演示了开发人员写入,维护和优化ApacheHadoop开发项目的技术知识,技能和能力。获得这个认证需要通过90分钟时限的50到55个活动问题的笔试。每个测试包括至少五个未评分的实验问题。

四、项目设计内容

1.Python可视化学生成绩管理系统实现

2.python学生成绩走势分析报告系统实现

3.运用SQL实现海量数据ETL加工处理

4.大数据平台建设与数据采集

五、项目技能理论知识学习与理解(理论知识库)

基于python的程序开发

1.python

1.1定义

(2)易学:Python极其容易上手,因为Python有极其简单的说明文档。

(3)易读、易维护:风格清晰划一、强制缩进。

(4)用途广泛

(5)速度快:Python的底层是用C语言写的,很多标准库和第三方库也都是用C写的,运行速度非常快。

(7)高层语言:用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。

(8)可移植性:由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能

够工作在不同平台上)。这些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、PalmOS、QNX、VMS、Psion、AcomRISCOS、VxWorks、PlayStation、SharpZaurus、WindowsCE、PocketPC、Symbian以及Google基于linux开发的android平台。

移植。

(11)可扩展性、可扩充性:如果需要一段关键代码运行得更快或者希望某些算法不

公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。

1.2需求分析

(1)识别问题域

(2)识别问题域的实体

(3)识别实体属性

(4)识别实体行为

(5)识别实体与实体间的关系

1.3程序设计

对识别的问题域实体建立对象模型,并建立实体关系模型。对象模型可以把已经识别的问题域映射到能够被编程语言识别和描述的对象、对象功能和对象行为域。

1.4编码阶段

UML模型设计完成后,基本可以参照UML模型或设计文档进入编码阶段。编码阶段主要包括代码编写、编译及单元测试。

1.5测试阶段

程序完成后,需要经过有效测试,排除潜在的程序BUG后,才能对外发布。

1.6运行阶段

虽然经过严格测试,程序运行过程中,依然会出现各种各样的问题需要维护,同时新的需求也要求程序不断地升级版本。

2.Python数据分析与可视化

2.1数据挖掘与数据分析

数据分析是指根据分析目的,采用对比分析、分组分析、交叉分析和回归分析等分析方法,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用,得到一个特征统计量结果的过程。(图1所示)

数据挖掘则是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过应用聚类、分类、回归和关联规则等技术,挖掘潜在价值的过程。

图1广义数据分析过程

2.2二者区别(图2所示)

图2数据分析与数据挖掘的区别

2.3数据分析的流程:(图3所示)

需求分析:数据分析中的需求分析也是数据分析环节的第一步和最重要的步骤之一,决定了后续的分析的方向、方法。

数据获取:数据是数据分析工作的基础,是指根据需求分析的结果提取,收集数据。

数据预处理:数据预处理是指对数据进行数据合并,数据清洗,数据变换和数据标准化,数据变换后使得整体数据变为干净整齐,可以直接用于分析建模这一过程的总称。

分析与建模:分析与建模是指通过对比分析、分组分析、交叉分析、回归分析等分析方法和聚类、分类、关联规则、智能推荐等模型与算法发现数据中的有价值信息,并得出结论的过程。

模型评价与优化:模型评价是指对已经建立的一个或多个模型,根据其模型的类别,使用不同的指标评价其性能优劣的过程。

部署:部署是指将通过了正式应用数据分析结果与结论应用至实际生产系统的过程。

2.4数据可视化

数据可视化:是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为“一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量”。

数据可视化主要是借助于图形化手段,清晰有效地传达与沟通信息。

数据:聚焦于解决数据的采集、清理、预处理、分析和挖掘

图形:聚焦于解决对光学图像进行接收、提取信息、加工变换、模式识别及存储显示

可视化:聚焦于解决将数据转换成图形,并进行交互处理

数据可视化方法:

(1)面积&尺寸可视化

(2)颜色可视化

(3)图形可视化

(4)概念可视化

注意:

做数据可视化时,几种方法经常是混合用的,尤其是做一些复杂图形和多维度数据的展示时。

做出的可视化图表一定要易于理解,在显性化的基础上越美观越好,切忌华而不实。

2.5数据分析与可视化常用工具

(1)MicrosoftExcel

(2)R语言

(3)Python语言

(4)JavaScript

(5)PHP

3.Linux系统

3.1Linux定义

3.2Shell简介

3.3Shell程序操作

4.SQL

4.1SQL定义

4.2ETL工具介绍

ETL(Extract、Transform、Load)共包含了数据抽取、数据转换与数据装载3部分内容,ETL技术是在数据仓库技术发展中日趋成熟的。到现在,大家常说的ETL技术已经远远超越出了这E、T、L这三部分的范畴,不再是简单地将数据从一个地方抽出进行转换再装载到另外一个地方这种概念了。时下大家说得最多的名词是数据仓库、数据治理、数据集成、数据中心、数据整合平台、数据交换池、数据管理、数据中台、数据融通等等。

4.3ETL目的

4.4ETL作用

ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去(数据源-----数据清洗----数据仓库模型-----数据仓库中去)并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。ETL主要的一个技术手段。

4.5数据库编程

SQL编程技术可以有效的克服SQL语言实验复杂应用方面的不足,提高应用系统和数据库管理系统间的互操作性。

4.6嵌入式SQL

(1)嵌入式SQL是将SQL语句嵌入程序设计语言中,对于嵌入式SQL语言,数据库管理系统一般采用预编译方法处理(即由数据库管理系统的预处理程序对源程序进行扫描,识别出嵌入式SQL语句,把它们转换成主语言调用语句,以使主语言的编译程序将纯的主语言程序编译成目标码)。

(2)在嵌入式SQL中为了快速区分SQL语句和主语言语句,所有的SQL语句都必须加前缀。

数据库缩写解释:DB(DateBase)数据库,DBS(DateBaseSystem)数据库系统,DBMS(DateBaseManageSystem)数据库管理系统,DDL(DataDefinitionLanguage)数据定义语言,DML(DataManipulationLanguage)数据操纵语言,DBTGDataBaseTaskGroup)数据库任务组,DCL(DataControlLanguage)数据控制语言。

5.大数据平台建设与数据采集

5.1数据采集介绍

ETL基本上就是数据采集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。数据源是整个大数据平台的上游,数据采集是数据源与数仓之间的管道。在采集过程中针对业务场景对数据进行治理,完成数据清洗工作。

在大数据场景下,数据源复杂、多样,包括业务数据库、日志数据、图片、视频等多媒体数据等。数据采集形式也需要更加复杂,多样,包括定时、实时、增量、全量等。常见的数据采集工具也多种多样,可以满足多种业务需求。

一个典型的数据加载架构:(图4所示)

图4典型数据加载结构

5.2常见的三个数据采集场景:

场景1:从支持FTP、SFTP、HTTP等协议的数据源获取数据

场景2:从业务数据库获取数据,数据采集录入后需支撑业务系统

场景3:数据源通过Kafka等消息队列,需要实时采集数据

5.3数据采集系统需求:

数据源管理与状态监控,定时、实时、全量、增量等多模式的数据采集及任务监控

THE END
1.深度学习数据清洗的目的mob649e81673fa5的技术博客深度学习的成功依赖于高质量的数据。在深度学习之前,数据清洗是一个至关重要的步骤。本文将详细介绍数据清洗的目的,流程及实现步骤,帮助初学者更好地理解这一过程。 数据清洗目的 数据清洗的主要目的是去除噪声和不一致的数据,确保输入到深度学习模型中的数据是准确和高效的。具体包括: https://blog.51cto.com/u_16175512/12697067
2.数据清洗的重要性与技巧:提升大数据分析的准确性和效率提高决策透明度:基于干净数据的决策更有可能产生预期的结果。数据清洗有助于去除偏见和噪声,从而提高决策的透明度和可解释性。 二、数据清洗的技巧 准备工作: 给每一个数据表或sheet页命名,方便后续寻找。 给每一个工作表加一列行号,方便后续恢复原始顺序。 https://blog.csdn.net/Shaidou_Data/article/details/144110971
3.原创解析:大数据分析中的数据清洗与特征工程实践精髓开发网一、数据清洗 数据清洗是数据分析的第一步,其目的是为了去除数据中的噪声和异常值,以保证分析结果的准确性。在实践中,我们通常需要进行以下几个步骤: 1. 数据探查:通过绘制图表、计算统计量等方式,了解数据的分布、趋势和异常值,为后续的数据清洗提供依据。 https://www.0370zz.com/html/biancheng/zx/2024-11-27/398359.html
4.数据清晰的定义以及数据清洗的方法数据清洗定义 数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某http://baijiahao.baidu.com/s?id=1716555146732917330&wfr=spider&for=pc
5.数据治理知识分享—数据元主数据参考标准指标数据业务术语07、数据清洗 依据标准对存量主数据开展清洗工作,清洗过程除了基于质量规则对已有不规范数据进行属性补充、规范化填写以外,更重要的是识别重复的数据、对重复数据进行去重及合并,数据层面主要通过新旧编码映射的方式确保旧编码的业务正常开展。 08、数据共享 存量数据的共享,主要通过初始化导入方式开展;增量数据的共享,主要https://www.asktempo.com/news/industry-information/1461.html
6.Airbnb(爱彼迎)产品数据分析三、数据清洗 3.1、数据集描述 数据集名称:Airbnb顾客预订数据 数据集来源:https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data 数据集简介:此数据集是kaggle上的一个竞赛项目,主要用来制作目的地信息的预测模型。此数据聚集包含两张数据表,其中train_user表中为用户数据,sessions表中为行为数据。https://www.iyunying.org/pm/178189.html
7.网站数据分析(6)——缺失值异常值和重复值的处理在数据清洗过程在数据清洗过程中,主要处理的是缺失值、异常值和重复值。所谓清洗,是对数据集进行丢弃、填充、替换、去重等操作,实现去除异 常、纠正错误、补足缺失的目的。 一、数据列缺失的种处理方法 数据缺失分为两种: 一是行记录的缺失,这种情况又称数据记录丢失; https://juejin.cn/post/6844903905084571656
8.淮南市人民政府新闻办公室2023年2月15日,谢家集区卫健委开展公共场所专项监督检查,执法人员巡查至谢家集区某宾馆时发现,该宾馆存在如下违法事实:一是该宾馆未按规定设置公共用品用具专用消毒间开展清洗消毒工作;二是该店两名从业人员未获得有效健康合格证明从事经营服务活动。 谢家集区某宾馆未按规定设置公共用品用具清洗、消毒设备设施的行为违反了http://ahhn.wenming.cn/xwfbhome/xwfbt_fbhsl/202403/t20240308_8455722.html
9.数据清洗的主要目的是什么?数据清洗的主要目的是什么? 数据清洗的主要目的是删除重复信息、纠正存在的错误,并提供数据一致性。这是数据预处理的第一步,也是保证后续结果正确的重要一环。如果不进行数据清洗,我们可能会得到错误的结果,比如因小数点错误而造成数据放大十倍,百倍甚至更大等。https://www.ai-indeed.com/encyclopedia/5463.html
10.数据清洗的主要目的问答题 数据清洗的主要目的 参考答案:数据清洗的主要目的是提高数据质量,确保数据的准确性和可靠性,以便于后续的数据分析和决策支持。数据清洗通常包括以下几 点击查看答案http://www.ppkao.com/kstkai/daan/61521c4fcd034e64a88c26c5008253c8
11.数据清洗的主要目的()全面预算管理的核心目的是实现企业战略目标。 A. 正确 B. 错误 查看完整题目与答案 全面预算管理的审议决策机构包括董事会、总经理办公会和财务部。 A. 正确 B. 错误 查看完整题目与答案 各单位主要负责人是本单位财会监督工作的第一责任人。 A. 正确 https://www.shuashuati.com/ti/042b6fd8afd0461eaebcc64c70c98408a2.html
12.数据预处理的主要目的是什么?数据预处理的主要目的是为了提高数据分析和建模的准确性、可靠性和效率。具体来说,数据预处理的主要目的包括: 数据清洗 清洗数据可以去除噪声、异常值、重复数据、缺失数据等对数据质量造成影响的因素,从而提高数据质量和可靠性。 数据转换 对数据进行转换可以消除数据的不一致性,将数据转换为可分析的形式,如将文本数据https://cloud.tencent.com/developer/techpedia/1719/11825