粗略估计,自ChatGPT于2022年11月30日上线以来,碳排放已超过814.61吨。
环球零碳研究中心·2023/02/1615:45
文|Shushu环球零碳研究中心
最近关于AI聊天创作工具ChatGPT的讨论很多。这是伊隆·马斯克创建的OpenAI公司所研发。
还有一些网友开始谈论ChatGPT的投入成本,像谷歌、华为、特斯拉、微软、Meta、苹果等,每年投入数以百亿美元的研发费用,被称为烧钱无底洞。
但是,很少有人谈论ChatGPT模型的环境成本。
我们要意识到,即使是数字产品也需要能源来开发和消耗。据统计,信息和通信技术(ICT)行业和数据中心行业在全球温室气体排放中所占比例相对较大,约占全球电力消耗的3-5%。
如果这些数字产品(从我们手机上运行的应用程序到在云端运行的数据),一旦所消耗的电力不是由可再生能源产生的,就会产生碳排放。这就是机器学习模型,也会产生碳排放的原因。ChatGPT也不例外。
这些模型所消耗的能源也影响着气候变化。在本文中,我们将从碳足迹的角度来看一下ChatGPT对环境的影响。
这里我们可以采用广泛使用的生命周期评估(LCA)法,该法旨在涵盖产品或过程生命周期的所有阶段。
虽然生命周期评估(LCA)法通常是评估产品从摇篮到坟墓的整个阶段的碳排放,这将考虑到原材料提取的所有过程对环境的影响。但此次对于ChatGPT的评估是仅专注于从制造设备到模型部署运行,如下图。
绿色部分为本次算ChatGPT生命周期碳足迹的3个主要阶段,分别为设备制造,模型训练,模型部署和运行。
那么,这3个主要阶段中,ChatGPT的碳排放究竟是多少?
01ChatGPT设备制造阶段的隐形碳排放
首先,我们来看设备制造阶段碳排放。
据了解,BLOOM和ChatGPT的前身GPT-3的模型大小大致相同,分别为176b和175b参数,因此设备方面也具有一定相似性。
不过这部分隐含碳还不包括其余计算基础设施(如网络交换机、冷却设备和其他设备)的隐含排放。
02ChatGPT模型训练阶段的碳排放
其次,估算模型训练阶段碳排放。
因为ChatGPT是基于GPT-3的一个升级版本,在GPT-3的模型架构基础上进行了优化并在训练时期增加了强化学习。以网上公开的数据表示,训练一个GPT-3约消耗1287MWh(兆瓦时)的电,相当于排放了552吨碳。
但由于强化学习需要额外消耗的电力,ChatGPT在模型训练阶段所产生的碳排放将大于552吨。
从这些大型语言模型的碳排放来看,ChatGPT前身GPT-3碳排放最大。据悉,美国人平均每年产生16.4吨碳排放,丹麦人平均每年产生11吨碳排放。因此,ChatGPT的模型训练碳排放多于50个丹麦人每年的碳排放。
03运行推理过程中ChatGPT的碳排放
再来估计运行推理阶段碳排放。
假设继续把BLOOM作为类比,可以推测ChatGPT运行阶段的碳排放。
大型语言模型BLOOM曾在具有16个NvidiaA10040GBGPU的GoogleCloudPlatform实例上部署并运行了18天,共432小时。
前面提到BLOOM与ChatGPT前身GPT-3的模型大小大致相同,因此我们假设把相同的硬件用于ChatGPT,并在16个NvidiaA10040GBGPU上运行,并推测硬件利用率始终为100%。
由于ChatGPT公司OpenAI的总部位于美国旧金山,所以猜测ChatGPT的托管在美国西部。
使用MLCO2Impact计算器,我们可以估算ChatGPT的每日碳排放为25.92kg,如下:
实际上16个A100GPU的计算能力并不能满足真实的需求,如果假设ChatGPT每天有100万用户咨询,每个用户有10个问题,每个问题有30个单词,ChatGPT的每个响应词在A100GPU上需要350毫秒,以此来计算:
根据CloudCarbonFootprint列出ChatGPT的Azure数据中心中A100的最低功耗46W(瓦特)和最高407W(瓦特)。为了方便计算,假设ChatGPT处理器都处于工作状态,因此取该范围的顶端消耗值。
每天29,167小时*407W=11,870kWh(千瓦时)
根据CloudCarbonFootprint,美国西部的排放因子为0.000322167吨/千瓦时,所以ChatGPT运行阶段的碳排放是:
0.000322167*11,870=每天3.82吨
04ChatGPT的总生命周期碳足迹
根据以上计算,我们最后合算总生命周期碳足迹。
自ChatGPT于2022年11月30日上线以来,运行约60天,我们可以非常简单粗略得到:
CHATGPT制造设备碳排放>33.41吨
CHATGPT模型训练碳排放>552吨
CHATGPT运行60天碳排放≈3.82吨*60天≈229.2吨
三者相加后,CHATGPT自上线以来的生命周期碳足迹将大于814.61吨CO2e。
这个数值估计是基于一些粗略的假设,因此带有很多不确定性,但与BLOOM等的可比较语言模型的碳足迹的全面估计相比,也存在一定合理性。
最后,通过这个初步计算,希望能启发机器学习模型的开发人员披露他们模型准确的能耗或碳足迹。只有真正了解到这些信息,才能在我们讨论如何减少我们的足迹时,优先解决那些产生最大碳减排的问题,同时评估模型的性能。
参考资料:
[11]ESTIMATINGTHECARBONFOOTPRINTOFBLOOM,A176BPARAMETERLANGUAGEMODEL