本次公开课,我们将邀请到友盟+首席数据架构师&数据委员会会长张金来为大家讲解到底什么是用户画像,快速建模框架,如何提高用户精准画像的的准确性,从理论到应用的一起了解用户画像。
此公开课为极客公园策划的「极客公开课Live」第十四期。本次公开课,我们将邀请到友盟+首席数据架构师&数据委员会会长张金来为大家讲解到底什么是用户画像,快速建模框架,如何提高用户精准画像的的准确性,从理论到应用的一起了解用户画像。
用户画像也叫用户标签,是基于用户行为分析获得的对用户的一种认知表达,也是后续数据分析加工的起点。从认知心理学的角度,用户标签其实与人认知世界的方式相一致,人为了简化思考,通常也会通过概念化的方式简化事物认知,这种概念认知就是标签。因此,用户画像的内容可以很宽泛,只要是对人的认知,都可以叫做用户画像。例如:今天路过这个门口三次的人,也可以是一个标签,只要他有合适的应用场景。
另外,我们需要从概念上加以区分,用户标签和用户透视,一个是个体的认知,一个是整体的标签分布,二者都经常被人统称为用户画像。今天我们在这里说的用户画像主要指标签。
一、市场细分和用户分群:市场营销领域的重要环节。比如在新品发布时,定位目标用户,切分市场。这是营销研究公司会经常用的方式。
二、数据化运营和用户分析。后台PV\UV\留存等数据,如果能够结合用户画像一起分析就会清晰很多,揭示数据趋势背后的秘密。
四、各种数据应用:例如推荐系统、预测系统。我们认为:未来所有应用一定是个性化的,所有服务都是千人千面的。而个性化的服务,都需要基于对用户的理解,前提就需要获得用户画像。
做好用户画像需要一定的门槛,一方面是数据的体量和丰富程度,另一方面是技术和算法能力。今天介绍的经验基础是【友盟+】数据,首先简单介绍一下。【友盟+】有覆盖线上线下的实时更新的全域数据资源,每天大约有14亿的设备,覆盖数百万级的网站和APP行为,这个庞大的数据量使得我们有丰富的数据资源来生产用户画像,同时又要求我们能相应的技术能力来进行处理。
结合上图,用户画像生产流程概览,我们将用户画像的生产比喻成一个流水线,就如同将矿石加工成成品的过程。用户浏览网页、使用APP、线下行为,这些数据都是矿石,需要提炼、加工成为产品,最后还要通过质检。
最后,质量检测,这一步也很重要。一个标签的质量决定了后期的应用效果,如果前期对人的分析偏了,后期结果就很难做对。
上面讲的是概念图,如果具象到实际操作中,是这样一个框架流程:
这里先留三个悬念:
悬念一:从用户行为日志开始到标签产出,为什么有两条线?
悬念二:标签体系为什么只作用在内容标注上?
悬念三:为什么下面的「评估」过程要特别标注出来?
1、从用户行为日志开始到标签产出,为什么有两条线?我们把画像分为两大类:第一类:统计型画像;第二类:预测性画像。
第二类,预测性画像。需要通过用户行为做预测,像用户的性别预测,尤其是挖掘人的内心态度。比如,用户在消费时,是激进的,还是保守的?有预测就有准确率。所以这里面有很重要的评估指标,就是正确率,也需要取样本集。这就是二者的不同,也会有不同的加工流程。
再继续介绍标签体系,因为很多同学会问到,「我应该建一个什么样的标签体系?什么样的标签体系是比较好的?」通常我们会把它分为四大类:
第一类:人口属性。比如说性别、年龄、常驻地、籍贯,甚至是身高、血型,这些东西叫做人口属性。
第二类:社会属性。因为我们每个人在社会里都不是一个单独的个体,一定有关联关系的,如婚恋状态、受教育程度、资产情况、收入情况、职业,我们把这些叫做社会属性。
第三类,兴趣偏好。摄影、运动、吃货、爱美、服饰、旅游、教育等,这部分是最常见的,也是最庞大的,难以一一列举完。
第四类,意识认知。消费心理、消费动机、价值观、生活态度、个性等,是内在的和最难获取的。举个例子,消费心理/动机。用户购物是为了炫耀,还是追求品质,还是为了安全感,这些都是不一样的。
在实际构建标签体系时,大家经常会遇到很多困惑,我列举5个常见问题。
第一、怎样的标签体系才是正确的?其实每种体系各有千秋,要结合实际应用去评估。
第二、标签体系需要很丰富么?标签是枚举不完的,可以横线延展、向下细分。也可以交叉分析,多维分析。如果没有自动化的方式去挖掘,是很难做分析的,太多的标签反而会带来使用上的障碍。
第三、标签体系需要保持稳定么?不是完全必要,标签体系就是产品/应用的一部分,要适应产品的发展,与时俱进。比如,以前没有共享经济这个词,今天却很热。我们是不是要增加一个标签,分析哪些人对共享经济的参与度高?喜欢共享单车、共享汽车。
但是,有一种情况下,标签要保持稳定。如果你生产的标签有下游模型训练的依赖,即我们模型建完后,它的输入是要保持稳定的,不能今天是ABC,明天是BCD。在这种情况下,是不能轻易对标签体系做更改的。
第四个,树状结构or网状结构?树状结构和网状结构从名字上就可以看出其分别。网状结构,更符合现实,但是层次关系很复杂,对数据的管理和存储都有更高要求。知乎,如果仔细去看它的话题设置,其实是网状的。
网状的特点就是一个子话题,父级可以不止一个,可能有两个。比如儿童玩具,既可以是母婴下分分类,也可以是玩具下的分类,它就会存在两个父节点之下。树状结构相对简单,也是我们最常用的。网状结构在一些特定场景下,我们也会去用。但是实现和维护的成本都比较高。比如,有一个节点是第四级的,但它的两个父节点一个是二级,一个是三级,结构异化带来处理上的麻烦。
第五个,何为一个好的标签体系?应用为王,不忘初心。标签是为了用的,并不是为了好玩,最好保证标签体系的灵活和细致性。
再回到刚才说的生产流程上。我先结合下面的图介绍上半边,统计型的标签是怎么去加工的。
对于这样的标签,大概需要什么流程去做呢?环节一很重要,内容标注。只有知道用户看的内容是什么,才能统计偏好。环节二,如何基于用户行为做聚合统计和归一化。
在做内容标注时,一般会有两种情况:第一种:有些公司在建自有用户画像时会很幸运,例如电商、视频类、音乐类的媒体,它给用户服务的这些内容是已经分类好的。可以直接用内容的标注来做用户行为标注。
但是,对于一些通用型的内容,比如【友盟+】的数据,会有PC浏览数据、APP的使用数据,一定要先了解用户喜欢看什么,才能去做下一步的工作。在这里面,最复杂,也最典型的就是网页的内容标注。
第一、统计量的选取。可能是浏览数量、浏览时长、浏览频度、复合关系等。举个复合关系的例子,对于某个商品类目的偏好,你可以将浏览、搜索、收藏,购买等行为统计量加权在一起考虑。
第二、个体内的可比性。个体用户的不同标签间具有可比性。举个例子,我有两个标签:阅读、旅游。我的阅读标签是0.8分,旅游是0.6分,代表我更倾向于去阅读,而不是去旅游?如何保证这一点呢?在上面公式里将个体的行为总和作为分母就可以了。
第三、垂类内的可比性。一个垂类内不同用户的相同标签具有可比性。
例如,我的动漫得分是0.8,你的是0.6,表示我比你要更喜欢动漫。那么分母就是选取整个动漫类行为的总和。比如说,今天全国用户在B站上一共100万小时,你有1个小时,你是百万分之一,他花了2个小时,大约是百万分之二,最后再做一个归一化,就会产生一个类内可比的得分。
但是排序和归一化到底有什么不同?排序只代表相对性,而刚才说归一化代表了强弱,我的得分是0.8和你是0.6,就表示偏好强度上我比你高了30%,而排序则不能反映这样的比例。
11、统计型标签生产要点回顾
1、行为数据。浏览、使用、点击、购买、LBS等,通过行为数据反映人的偏好倾向;
2、标签体系。根据实际需要进行设定。可以参考《消费者行为学》、电商类目体系、应用市场体系、媒体资讯体系等;
预测性标签的生产流程:特征抽取→监督学习、样本数据→评估→标签产出,这也是经典的机器学习流程。
特征工程,是机器学习的关键过程之一。最重要的是提取不同侧面的特征。我们以移动端使用行为可抽取的部分特征为例:
1、APP使用事实特征:用户30天内开启APP的天数、用户180天内开启APP的天数。这两个数据都会作为特征,考虑用户短期和长期的情况。
用户30天内使用APP时长占比、用户180天内使用APP时长占比。刚才说的是次数,这块是时长,用户可能反复打开,但是总时长很短。
2、兴趣特征:虽然信息有损失,但是泛化效果更好。举个例子,你是A站用户,他是B站用户,理论上讲,如果我们用最底层的数据,你们两个人是不太一样的,但某种程度上,他们都是对二次元感兴趣的人;
1、模型选择。有有监督的分类算法:逻辑回归、SVM、决策树、Bagging、深度学习;
2、二分类or多分类。二分类比较简单,多分类则有不同的拆分策略。举个例子,把人分为男女,是二分类的问题;分为年龄段,就是多分类的问题,我们在机器学习当中也有不同的做法,OvO(一对一)、OvR(一对其他)、MvM(多对多)。
3、结果评估。评估指标包括:正确率、召回率、应用效果。但是对于统计型标签来说无正确率,召回率看阈值,今天你只看一个汽车的型号,理论上我也可以给你打一个标签,但是分值非常低,这个分值到底要不要算做这个标签的人,要看中选什么样强度的人。预测型标签,一般看Precision,Recall,F-Score,ROC。
15、关于标签评估的延展
标签的生产不是目的,使用才是。正确率≠效果,举个例子:喜欢看车不代表是试驾购车的目前人群。
第一,用户分层的评估。针对于重点人群进行评估,不同人群分层进行评估;第二,从全局进行评估。不要只局限于样本集合的评估,参看一些全局统计数据。例如,人口属性的分布和统计局的结果是否相符?第三,有效果反馈的应用。将标签直接应用于使用场景中检验效果。例如,进行营销的定向投放,测试点击率;第四,利用其它数据佐证。使用其他行为数据来验证标签的有效性。例如,在电商环境中后续的行为差异来评估显著性。
我们今天不再强调标签丰富度,而是快速建模的能力。快速建模怎么做到?这套系统在【友盟+】比较完备,使得我们收到一个样本就可以很快训练模型,这个流程最快3个小时就能够把标签算出来。
Data->Insight->Action->Data->…
DIP营销服务流程
关于上述流程的实际使用,结合【友盟+】DIP数据智能平台讲一下营销服务流程是如何做的。
左上面是我们一些数据,例如:客户上传数据后,我们会有一个匹配的过程,把所有数据打通连接。上传、匹配之后,会对这些数据做人群分析。比如说宝马X1今年刚上市,他们把去年购买X1的用户都上传上来,我们会分析这样的用户在哪些方面是有特性的,比如年龄段、地域分布、收入、偏好。有了这样的分析后,我们可以选择相应的人群,基于历史的偏好、特征,然后再去投放;如果中间我们会发现人群量不够,最初选择10万人可以放大到100万人。最后输出到媒体、RTB等渠道商。做预算,看效果,将效果数据回流,再去迭代,以进一步提高投放的精准率。这是我们常用的一个流程。
基于上面的分析之后,再做结合分析。举个例子,你对科技感兴趣,那你的手机是不是到了更新期,你手机大概用了三年,应该到了更新期,就可以对这样的特定人进行投放。把人圈出来,投放、曝光,曝光之后我们去看营销的结果,然后返回来继续分析,会不会对其他内容感兴趣,再去做下一轮分析。
这就是我们之前做的一系列方法的一个应用。
最后关于数据应用我再给出一些通用型的建议:
第一、分析:
1、结合业务场景去选择分析维度:如果你是给中年妇女推荐保健品,你去分析她们喜欢不喜欢二次元,这就非常说不通了。
2、不要只是简单的看画像分布,一定要做对比。
3、例如,与大盘对比情况:TGI。上图是我们分析一个APP内的购买人群。紫色的线是人群的分布,年龄段的分布。我们看到18-30岁之间的人很多,感觉还不错。但是,如果你做一下大盘情况,APP的用户大多是年轻人,因为本身这个产品有一个年龄偏小的分布特征。通过分析对比之后发现,TGI比较高是30-39岁的人,这个范围的人才是在购买人群里面是显著的,这个群人才是你去做运营活动、投放的人群。
分析,一定要去做对比,单纯看分布是并没有太多信息含量。不对比看不出来差异。
4、环节的对比。哪些人我触达了,哪些人到这里落地了,哪些人注册了、哪些人真正浏览、哪些是留存、哪些是付费,每一个环节你都可以做这样的分析。
另外一点,直觉未必靠谱,一定要通过反馈来检测,就是刚才说我们为什么要数据闭环,比如说,有一个商品设计者说,我这个产品目标是吸引白领女性,实际上他上市场去卖的时候发现,买他的男性大学生最多,跟他想的根本不一样。
更多详细讲解,请见知乎Live
以上就是本次公开课的关键内容,更多演示请点击「极客公开课Live」第十四期或扫描下方二维码查看获取:
1
用极客视角,追踪你不可错过的科技圈.
聊科技,谈商业。
公司地址:北京市朝阳区酒仙桥路4号751D·Park正东集团院内C8座105室极客公园