科普电解水制氢催化剂有哪些?

目前,电解水制氢的催化剂主要分为贵金属、过渡金属和非金属三类。其中贵金属催化剂具有优异的催化活性,但由于其储量和价格问题,无法大规模工业化应用,因此,目前的研究目标是尽量降低催化剂中贵金属的载量。过渡金属催化剂具有成本低、制备方法简单、结构组成多样等优势,成为目前研究的热点。非金属催化剂主要是碳材料,碳材料具有导电性优异、耐酸碱腐蚀能力强、结构可调等优点,可通过掺杂或制造缺陷等方法,在一定程度上提高碳材料的催化活性。

贵金属催化剂

与单原子催化剂相比,亚纳米团簇贵金属催化剂的制备方法更加简便,同时具有较高的贵金属原子利用率和较大的比表面积。Wan等在中空介孔碳球中负载Pt纳米簇,制备了高活性和高稳定性的HER催化剂(Pt5/HMCS),如图1(c)所示。在碱性电解质中,相同贵金属载量的Pt5/HMCS的质量活性是商业Pt/C的12倍。Zhuang等以巯基琥珀酸作为保护剂和还原剂合成了Pt21纳米团簇,将其负载到氧化石墨烯纳米片上,该催化剂中Pt的负载量仅为0.8wt.%,同时在阴极过电位为-0.05V时,电流密度可达33.0mA·cm·μg-1。贵金属钌(Ru)具有较高的电化学活性,价格比Pt低,缺点是容易团聚且稳定性较差。为了解决这一问题,可采用元素掺杂、合金化和基体锚定等方法。Wang等通过水热反应,将Ru3+吸附在氧化碳纳米管(OCNT)表面形成Ru—COOH。随后在惰性气体中将Ru3+高温还原为Ru纳米颗粒,制备了Ru@OCNTs,Ru纳米颗粒在催化剂表面分散均匀。

电化学测试表明,该催化剂在酸性和碱性条件下具有优异的HER催化活性和稳定性,当电流密度达到10mA·cm-2时,Ru@OCNTs的HER过电位仅为13.2mV,Tafel斜率为45.4mV·dec-1[13]。Li等通过石墨烯纳米片上大量的羧酸基团对Ru3+进行锚定,经退火处理将Ru3+还原成Ru,制备了Ru纳米颗粒均匀分散的Ru@GnP催化剂。该催化剂载体具有较高的比表面积(403.04㎡·g-1),增加了催化剂的活性位点。

过渡金属催化剂

过渡金属(Ni、Fe、Mo和Co等)具有类贵金属的未满型d轨道电子分布,被认为是替代贵金属催化剂的理想材料。过渡金属催化剂主要有过渡金属硫化物、磷化物、硒化物、氧化物、氮化物、碳化物、硼化物、碲化物和过渡金属合金等。目前主要通过电子环境调控、纳米结构优化和多组分协同效应等策略对过渡金属催化剂进行改性,从而提升催化性能。相较于Co、Fe和Mo等过渡金属基材料,镍基催化剂催化HER的吉布斯自由能变化较小,在相同电流密度下,镍基催化剂催化HER的过电位较低。掺杂其他元素能够调控镍基催化剂的电子结构,从而进一步提高催化剂的活性及稳定性。

镍基催化剂的设计策略一般为两种,一种是镍和其他元素的协同作用,如Pt/Ni(OH)2异质结构表现出优异的电催化活性;另一种是改变催化剂的结构,通过暴露更多的活性位点来增强催化活性,如构建纳米片、纳米线和纳米阵列等。Gan等运用水热法在泡沫镍上制备了镍-铁氢氧化物,然后生长金属铜,最后进行低温氮化处理。制备的镍-铁-铜氮化物催化剂具有优异的全解水催化活性和稳定性,当电流密度为10mA·cm-2时,析氧反应(Oxygenevolutionreaction,OER)过电位为121mV,HER过电位仅为33mV。铜基催化剂具有含量丰富、毒性低及本征活性高等优点,在碱性介质中具有优异的电解水催化活性和稳定性。与单一成分的催化剂相比,多组分催化剂往往能表现出更好的催化活性。Qazi等将泡沫铜置于大气环境中,在350℃条件下氧化2h得到Cu2O。

通过简单的热处理工艺,在Cu2O基体上制备了Ni-Co合金和NiCoO2纳米异质结构,即NiCo-NiCoO2@Cu2O@CF催化剂。在碱性介质中,当电流密度为10mA·cm-2时,该催化剂HER和OER过电位分别为113和327mV,均表现出较高的催化活性。过渡金属碳化物具有较好的导电性、耐蚀性和稳定性,是一种比较理想的电催化材料。其中,钨基碳化物(WC)在HER中具有类Pt的催化行为,且WC的比表面积大、催化活性位点暴露充分,因此,可在较低载量时表现出较高的HER催化活性[29]。Han等采用两步法合成了N掺杂WC纳米阵列,如图2(a)所示。通过水热反应在碳纤维上生长了WO3纳米阵列,然后通过热解三聚氰胺将WO3纳米阵列还原并碳化,该催化剂表现出优异的HER催化活性,当电流密度为200mA·cm-2时,HER过电位仅为190mV[30]。Wu等采用水热反应和气固渗碳工艺相结合的方法制备了具有独特构型和电子分布的介孔WC纳米板。

在酸性溶液中,HER的起始过电位为63mV,Tafel斜率为58mV·dec-1,在长循环后催化性能没有明显的下降,表现出较好的HER活性和稳定性。

过渡金属磷化物由于具有价格低廉、原料易得和化学稳定性高等优点,广泛地应用于电解水制氢领域。Xiao等在MoP中掺杂0.02wt.%~0.05wt.%的Ni或Co。如图2(b)所示,当pH较低时,掺杂Ni或Co的MoP催化剂在电流密度为10mA·cm-2时,HER过电位均比纯MoP低。实验研究和DFT理论计算结果表明,即使是微量的掺杂也会对过渡金属磷化物的HER催化性能产生较大的影响。Li等在泡沫镍表面通过脉冲电沉积的方法制备了镍铁共掺杂的CoP催化剂,镍铁共掺杂有效地抑制了阳极氧化过程中Co的价态变化,从而使催化剂运行20h后仍具有较好的催化活性,在电流密度为10mA·cm-2时,OER过电位仅为280mV。硫族元素掺杂(S、Se、Te)能够改善催化剂的电子结构,提高碱性电解液中的HER性能。Anjum等研究了S掺杂CO2P的催化活性,在碱性电解液中,S掺杂CO2P的HER过电位小于图中其他材料,如图2(c)所示。

DFT计算表明,CO2P在掺杂S后,费米能级附近的态密度降低,表明电子局域化的增加使Co的金属性降低,Co中心上诱导的正电荷与H2O中氧的孤对电子配位,提高了Volmer步骤的反应速率。MoS2作为一种低成本的工业加氢脱硫剂,具有丰富的活性位点和良好的HER催化活性。Gopi等使用MoS2修饰Ni-Co金属有机框架,并进行磷化处理,得到一种高活性、高稳定性的电解水催化剂。在电流密度为10mA·cm-2时,OER和HER过电位分别为184和84mV[36]。硒原子半径大于硫,电离能较小,硒化物相对于硫化物导电性更好。钱佳慧通过锂插层剥离法制备出WSe2和MoSe2纳米片,与CoP超声混合,得到的CoP/WSe2和CoP/MoSe2催化剂在酸性条件下表现出优异的HER性能,当阴极过电位为300mV时,CoP/WSe2和CoP/MoSe2催化HER电流密度分别达到102.9和155.14mA·cm-2。

非金属催化剂

Liu等利用燃烧化学气相沉积(CCVD)法成功地合成了硼碳氮修饰的石墨烯(BCN@GC)作为电解水制氢催化剂,如图3(b)所示。GC的中空结构增加了催化剂的比表面积,为氢吸附/脱附提供了更多的活性位点。此外,GC还有助于在B-C-N框架中形成更多的BCN相。三元杂化结构和含碳量的增加均有利于提高催化剂的电导率,在酸性介质中,电流密度为10mA·cm-2时的HER过电位可达333mV,工作24h后催化性能保持稳定。

THE END
1.新型催化剂将水解制氢效率提高200倍氢气晶体原子德国马克斯·普朗克研究所科学家研制出一种独特的拓扑手性晶体,并将其用作水解制氢过程中的催化剂。通过操控该晶体内电子自旋,科学家将水解制氢效率提升了200倍。相关论文发表于最新一期《自然·能源》杂志。 作为一种清洁燃料,氢气来源丰富、能量密度高,可替代化石燃料,用于运输、发电等多个领域。但是,目前99%的氢气https://www.163.com/dy/article/JICVJ14P0553TKL7.html
2.新型催化剂将水解制氢效率提高200倍德国马克斯·普朗克研究所科学家研制出一种独特的拓扑手性晶体,并将其用作水解制氢过程中的催化剂。通过操控该晶体内电子自旋,科学家将水解制氢效率提升了200倍。相关论文发表于最新一期《自然·能源》杂志。作为一种清洁燃料,氢气来源丰富、能量密度高,可替代化石燃料,用于运输、发电等多个领域。但是,目前99%的https://baijiahao.baidu.com/s?id=1817286642246631881&wfr=spider&for=pc
3.姚向东:目前用铂催化剂制氢要消耗很多能源要研发用电量更少的非中山大学先进能源学院院长姚向东表示,目前,使用贵金属催化剂制氢,需要消耗很多能源,基本上是5度电产一标方的氢气。应该研发一款用电量更少,性能更好的非贵金属新型制氢催化剂,通过突破性技术推动行业进步。 4月20日,在2024“全球投资行”系列沙龙深圳站中,中山大学先进能源学院院长姚向东表示,目前,使用贵金属催化剂https://www.yicai.com/video/102093436.html
4.决定电解水制氢效率的关键材料之一:催化剂也分很多种该技术成本较低,隔膜兼具良好的气密性、稳定性和低电阻性,能够配合非贵金属催化剂实现高电导率和大电流密度,是极具发展前景的制氢技术,但目前存在离子电导率低、高温稳定性差等问题,需进一步研究开发高效稳定的隔膜及适配的高性能催化剂。 (二)质子交换膜电解水制氢(PEM)https://www.xianjichina.com/special/detail_555066.html
5.燃料电池催化剂制氢电解槽制氢膜电极水电解催化剂宁波中科科创新能源科技有限公司拥有多项核心技术,包括贵金属基催化剂规模化制备技术、合金催化剂规模化制备技术和膜电极规模化制备技术等.推出的高金属载量催化剂适用于氢-氧(空)质子交换膜燃料电池、直接醇类燃料电池、金属-空气电池和传感器等,其主要技术指标完全达到http://www.cas-nano.cn/
6.非贵金属催化剂的合成及其电解水制氢——推荐一个综合化学实验Chem. 2023, 38 (8), 232–239 doi: 10.3866/PKU.DXHX202210015 www.dxhx.pku.edu.cn 非贵金属催化剂的合成及其电解水制氢 ——推荐一个综合化学实验 靳军 1,2,*,周霞 1,2,李树文 1,2,丁勇 1,2,* 1 兰州大学化学化工学院,兰州 730000 2 化学国家级实验教学示范中心(兰州大学),兰州 730000 摘要:https://www.dxhx.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=37389
7.齐翔腾达:002408齐翔腾达投资者关系管理信息化、高端化、园区化方向,在原有产业链的基础上继续延链、补链、强链,深耕碳三碳四下游新材料领域,形成新一轮高质量发展路线图。5、目前公司贵金属催化剂的主要产品有哪些?回复:公司控股子公司齐鲁科力生产的贵金属催化剂主要有加氢催化剂、顺酐催化剂、制氢转化催化剂、耐硫变换催化剂等。未来公司还将充分发挥http://gubaf10.eastmoney.com/news,002408,1405080093,d.html
8.TiO2光电催化制氢基本原理及其影响因素1972年Fujishima等利用n-TiO2半导体电极光催化分解水的研究结果引起了各国科学家的高度重视,极大地促进光催化的迅速发展。光电催化剂中,n-TiO2因为耐光腐蚀、稳定性高等优点,研究最为广泛,SnO2、ZnO、SrTiO3等也得到广泛的研究。 n-TiO2太阳电池的最高电压尚不足以用来光电催化制氢,故一般都需施加偏置电压,以使电解过https://www.sotai.cn/news/show-2756.html
9.一种用于电解水制氢的贵金属粉末催化剂的制备方法与流程1.本发明属于电解水制氢技术领域,具体而言涉及一种用于电解水制氢的贵金属粉末催化剂的制备方法。 背景技术: 2.可再生能源电解水制氢在国际上呈现快速发展态势,许多国家已经开始设定氢能在交通领域之外的工业、建筑、电力等行业发展目标,在政府规划、应用示范等方面都有积极表现。 http://mip.xjishu.com/zhuanli/46/202210830686.html
10.催化制氢范文8篇(全文)自从1972 年Fujishima等[1]报道Ti O2单晶电极上的光解水产氢现象以来,光分解水制氢以及光分解有机污染物的光催化剂的制备方法,层出不穷。常见的光催化剂主要有Ti O2和硫属半导体两大类,但Ti O2仅在紫外光范围内响应,而硫化镉等硫属半导体化合物存在光腐蚀[2]。合成可见光催化、高效稳定的光催化剂,主要有金https://www.99xueshu.com/w/ikeyhfrxglt5.html
11.电气获得实用新型专利授权:“一种PEM电解水制氢用贵金属催化剂证券之星消息,根据天眼查 APP 数据显示上海电气(601727)新获得一项实用新型专利授权,专利名为 " 一种 PEM 电解水制氢用贵金属催化剂活化装置 ",专利申请号为 CN202323621487.9,授权日为 2024 年 11 月 15 日。 专利摘要:本实用新型公开一种 PEM 电解水制氢用贵金属催化剂活化装置,包括电器柜底座,电器柜底座上http://app.myzaker.com/news/article.php?pk=6737a0868e9f09377a556048
12.盘点那些电化学制氢的催化剂制氢技术应用除了耗电之外,贵金属催化剂的使用也增加了电解水制氢的成本。为了提高电解水制氢的效率、降低其需要的成本,科学家们正在不断研究新型催化剂,以帮助电解水制氢技术能够早日大规模使用。 《环球零碳》带大家梳理一些国际上最新的、清洁、经济的催化剂,正是这些研究发现,推动了电化学制氢的发展。 http://www.h2fc.net/Technology/show-512.html
13.制氢关键核心材料——催化剂!凯大催化(BJ830974)股吧贵金属催化剂为质子交换膜电解水制氢的核心关键材料。电解水制氢主要有三种技术路线:碱性电解(AWE)、质子交换膜(PEM)电解和固体氧化物(SOEC)电解。其中质子交换膜电解水制氢的核心关键材料主要系质子交换膜和贵金属催化剂,目前公司已具备水电解制氢气贵金属催化材料的技术储备。 (凯大催化)并且,作为燃料电池膜电极中http://guba.sina.cn/view_143393_22.html
14.一种非贵金属电解水催化剂及其制备方法.pdf一种非贵金属电解水催化剂的制备方法,涉及催化剂技术领域,解决了电解水在高电流密度下催化剂性能受限的问题,可应用于电解水制氢过程中。将非贵金属前驱体溶于水中,得到第一溶液;将界面诱导剂前体溶于水中,得到第二溶液;搅拌条件下将所述第二溶液加入到所述第一溶液中,得到第三溶液;将沉淀剂分散在水中,得到沉淀https://max.book118.com/html/2023/0819/6023122200005214.shtm
15.电解水制氢MoS2催化剂研究与氢能技术展望新能源技术采用双极膜电解水制氢工艺改变了原有电化学反应历程,克服了碱性电解过程电极极化的限制,成功实现析氢反应和析氧反应的“解耦”。该电解过程简单,容易进行工业放大,产物除去氢气和氧气析出以外,无任何污染物排放,成为完整意义上的绿色能源技术。 目前,酸性环境中的电解水析氢(HER)过程完全依赖昂贵的含铂催化剂,严重http://www.china-nengyuan.com/tech/169226.html
16.2024一方面,贵金属催化剂的高成本限制了其在大规模工业化生产中的应用,而非贵金属催化剂的性能仍需进一步提升。另一方面,随着全球能源结构的转型和清洁能源需求的不断增长,电解水制氢技术作为一种重要的清洁能源生产方式,具有广阔的市场前景和发展空间。针对这些挑战和机遇,行业内的研究机构和企业需要加强合作,共同推动电解https://www.renrendoc.com/paper/327982870.html
17.Pd/C钯炭催化剂Pt/C铂炭催化剂贵金属加氢催化剂(3)性能:活性炭负载贵金属催化剂在国内催化加氢工业得到广泛应用,采用催化加氢工艺生产了许多产品,如苯胺、邻苯二胺、间苯二胺、对氨基苯酚、3,3`-二氯苯胺、2,4-二氨基甲苯、邻氯苯胺等等,其中3,3`-二氯联苯胺生产中,反应温度60-100℃,压力0.2-1.0MPa,采用的Pt/C催化剂,产品收率≥95%、产品质量均超过目https://www.china.cn/qtcuihuaji/1871362494.html
18.「开达化工」氯化铑氯化铱醋酸钯钯炭催化剂陕西开达化工有限责任公司专业从事稀贵金属材料研发20余年,主要生产钯、铂、钌、铑、铱、金银等各系列贵金属催化剂、双氧化催化剂、活性钛阳极及PEM燃料电池和电解水制氢专用催化剂,高新技术企业。http://kaidac.com/