科学家用“活字印刷法”合成单原子催化剂,有效避免贵金属单原子团聚,已实现均一性公斤级合成纳米超导材料

活字印刷术是中国古代四大发明之一,通过将可移动的木质字模排列组合,实现各种文字和书籍的印刷。

以活字印刷法为灵感,海南大学教授团队提出了一种制备贵金属单原子催化剂的普适性策略,并表现出优异的氢氧化和氢析出反应活性[1]。

具体来说,研究人员以精确合成的多种贵金属单原子前驱体作为“活字”的模板,包括钯(Pd)、铂(Pt)、铑(Rh)、铱(Ir)、钌(Ru)等,将多孔碳载体作为“纸张”。

通过高温焙烧,成功把前驱体中的贵金属单原子“点对点”地印刷到碳载体上,最终合成贵金属单原子催化剂(SA-PM/CNs)。

这种通用的催化剂合成策略有效地避免了制备过程中贵金属原子的团聚现象,并能够确保贵金属原子的高度分散性。该合成策略具有普适性、可拓展性以及规模化制备的能力,展现出了巨大的产业化潜力。

审稿人对该研究评价称,普适性策略不仅能够制备贵金属单原子催化剂,还能拓展到非贵金属催化剂,在氧还原反应、析氧反应以及氢燃料电池等不同的电催化体系均具有应用潜力。

指出,合成的多种单原子催化剂能够应用于光电催化、金属-空气电池、氢燃料电池等领域。目前,该催化剂在实验室能够实现公斤级合成,且性能均一性较好。

该方法不仅为合成单原子提供新方向,还为设计合成新型多活性中心和多功能单原子催化剂开辟了新道路。“这种具有普适性的合成策略,为研究单原子催化剂提供了高效、可控的制备方法,也为合成其他种类单原子催化剂提供借鉴。”他说。

发展氢能产业是世界能源技术变革的重要方向

追求清洁、可再生的能源及高效的能源利用与转化,是世界经济和社会可持续发展的重大需求。氢的能源属性是清洁高效、可再生的二次能源,在能源的转型和存储、交通等领域具有重要的应用前景。

据国际氢能委员会预测,“2050年氢能在全球能源中的比重达到18%,氢能产业链将创造3000万个工作岗位,创造2.5万亿美元产值,减少60亿吨二氧化碳排放[2]。”

随着世界各国将能源朝着更加清洁、低碳和智能的方向推进,发展和加强氢能产业建设已成为当前全球能源技术变革的重要方向之一。这不仅是实现中国“双碳”目标的具体路径,也是建设制造强国、搭建新型能源体系、建设现代化产业体系的重要举措。

2023年,中国产氢量突破4000万吨,位居世界第一。然而,这些氢气基本来自化石能源制氢和工业副产氢。其中,利用可再生能源电解水制取的绿氢占比不到1%;另一方面,中国还存在较大的弃风和弃光等问题。

如何以绿氢为媒介消纳富余可再生能源,是科学家们重点探索的方向之一。在高效的氢电能量转化过程中,催化剂发挥着举足轻重的作用。

然而,在实际运行条件下,催化剂面临着强酸、强碱的腐蚀性环境,以及高电压、大电流的操作环境,极易造成催化剂腐蚀失稳,降低稳定性和氢能器件寿命的缩减。

实现多种贵金属单原子的可控合成

当前,发展低成本、高性能和长寿命的氢电催化材料及器件,也是氢能产业发展面临的挑战之一。

为解决该问题,团队一直围绕着低铂贵金属催化剂开展研究,并取得了一系列创新性的研究成果,包括高稳定性的一维中空纳米笼结构催化剂、核壳结构、纳米团簇催化剂等[3-7]。

最近,单原子催化剂在诸多催化反应中,表现出优异的催化活性和应用潜力,这主要归因于其原子利用率高、活性位点明确且均一、独特的电子结构等本征优势。

其中,贵金属单原子催化剂可以极限地降低贵金属的使用量,而保持其高活性和稳定性,正好符合该课题组低铂催化剂的研究方向。

在制备过程中,贵金属原子容易发生团聚形成颗粒,因此,如何有效地确保贵金属单原子的分散性是一大难题。

同时,贵金属不同元素之间性质差异较大,用单一方法难以实现不同种类的贵金属单原子催化剂的可控合成,极大地限制了单原子催化剂的研究和应用。

该课题组发现,利用氮化碳(C3N4)载体能够在阻断金属原子聚集方面达到较为理想的效果。并且,还可以提供氮源来固定金属原子,从而实现贵金属单原子催化剂的可控制备。

研究人员证实了SA-Pd/CN、SA-Pt/CN和SA-Ru/CN在氢析出反应中展现出和商业催化剂相当的催化活性和选择性。

此外,在印刷载体的选择方面,虽然最终获得的都是由多孔碳载体负责的贵金属单原子,但不同碳源对贵金属单原子的负载量具有较大的影响。

表示:“我们通过多次尝试,选择了氮含量高、在高温下容易形成较多缺陷位点的碳源聚多巴胺,为贵金属单原子提供了更多的锚定位点。”

总的来说,研究人员通过积极地寻找各种原子级分散金属的材料载体,同时不断地优化制备工艺,开发出贵金属单原子催化剂的普适性制备策略。

海南大学助理研究员为论文第一作者,海南大学副教授、教授和教授为论文共同通讯作者。

当前,多金属单原子催化剂已经展示出比单一金属单原子催化剂更好的性能。然而,具有多金属活性中心的催化剂的合成是挑战之一。基于此,他们下一步的研究计划是将探索更高性能的多元单原子催化剂,以实现二元或多元单原子催化剂的精确合成。

“通过开展实际氢能器件水平的测试,来验证我们催化剂的实用性,并将结果反馈于催化剂设计,从而进一步优化合成和量产方法。”说道。

致力于将催化剂放大制备和公斤级测试

目前,担任海南大学海洋科学与工程学院副院长、教授、博士生导师。该课题组的研究方向聚焦在海洋能源与资源开发领域,包括海水制氢、海水电池、海水提铀/锂和海洋能源装备等。

在课题组之前的研究中,曾以腐蚀诱导策略为基础,研发出一种低铂合金催化剂配位和应力效应协同调控新方法。一维串状纳米笼低铂催化剂具有优异的电催化性能,通过该催化剂实现了氢燃料电池的输出功率和使用寿命的大幅度提升。

此外,团队还开发了一种基于超薄铂层的铂基核壳结构催化剂新体系,揭示核壳结构催化剂稳定性调控机制。并且,根据直接电解海水制氢以及海水电解槽的实际测试,对该催化剂的稳定性进行验证。

认为,在研究方向的选择上,应聚焦存在的关键科学问题和技术难题,又能服务当地的经济发展和需求,实现“特色取胜”。

因此,他们也在开展直接电解海水制氢技术。随着“双碳”目标的临近和落实,巨量的淡水纯化和电力需求将会给诸多地区带来严重的社会和环境压力。

通过耦合海洋可再生能源和直接电解海水制氢技术,将是一项比较理想的规模化绿氢制取途径。“通过直接电解海水制氢技术,将蓝色能源转化为稳定的氢能供应系统,服务于中国海洋强国战略,将是我们未来的奋斗和发展目标。”说。

除了基础研究,将技术向产业化落地也是致力于推动的目标。据悉,该课题组与国家能源集团共建立了海洋清洁能源研究院,主要研究内容之一,是将具有应用前景的催化剂放大制备,实现中试和公斤级测试。

此外,他们还和国家电投集团(陵水)智慧能源有限公司共同开展新型水解制氢高效膜电极组件的研发及其基础研究,将进行波动性光伏和风电制氢,储氢和氢能车辆运行示范系统。

表示:“我们坚信,随着中国‘双碳’目标的临近和政策的落实,氢能产业必将获得较大的发展。”

参考资料:

4.Rao,P.,Deng,Y.,Fan,W.,Luo,J.,Deng,P.,Li,J.,Shen,Y.,Tian,X.*,Movabletypeprintingmethodtosynthesizehigh-entropysingle-atomcatalysts,NatureCommunications2022,13,5071.

5.Xu,Y.,Wu,D.,Zhang,Q.,Rao,P.,Deng,P.*,Tang,M.;Li,J.,Hua,Y.,Wang,C.,Zhong,S.,Jia,C.,Liu,Z.,Shen,Y.,Gu,L.*,Tian,X.*,Liu,Q*.RegulatingAucoverageforthedirectoxidationofmethanetomethanol.NatureCommunications2024,15,564.

6.Song,Y.,Zheng,X.,Yang,Y.,Liu,Y.*,Li,J.,Wu,D.,Liu,W.,Shen,Y.,Tian,X.*.HeterojunctionEngineeringofMultinaryMetalSulfide-BasedPhotocatalystsforEfficientPhotocatalyticHydrogenEvolution.AdvancedMaterials2023,2305835.

7.Tian,X.,Lu,X.F.,Xia,B.*,Lou,X.*,AdvancedElectrocatalystsfortheOxygenReductionReactioninEnergyConversionTechnologies.Joule2020,4,45-68.

THE END
1.科普电解水制氢催化剂有哪些?制氢其HER催化活性远优于商业Pt/C催化剂,且具有优异的稳定性。该工作表明通过不同种类贵金属的协同作用,能够提高催化剂的性能,为设计具有优异催化活性和稳定性的贵金属二聚体提供了新的思路。 与单原子催化剂相比,亚纳米团簇贵金属催化剂的制备方法更加简便,同时具有较高的贵金属原子利用率和较大的比表面积。Wan等在https://h2.in-en.com/html/h2-2432004.shtml
2.科学智库贵金属催化剂由于其高活性、高稳定性等特点,被广泛用于化工反应过程。但是贵金属资源稀缺导致其价格昂贵,同时贵金属独特的物理化学性质又使其在多种催化反应中不可替代。因此,提高贵金属的原子利用效率一直是催化剂制备科学的核心问题之一。一般而言,金属表面的配位不饱和原子是催化活性中心,因而提高贵金属分散度,增加其https://thinktank.sciencereading.cn/booklib/v/subLibPreview/122/327/1050706.html
3.贵金属单原子催化剂的制备及其在CO,VOCs完全氧化反应中的应用第36 卷第 1 期 2022 年 2 月 分子催化 JOURNAL OF MOLECULAR CATALYSIS( CHINA ) Vol.36,No.1 Feb.? 2022 文章编号:1001-3555(2022)01-0081-17 贵金属单原子催化剂的制备及其在 CO,VOCs 完全氧化反应中的应用 刘玉凤 1, 周? 瑛 1, 卢? 梅 2, 耿? 俊 1, 徐? 鑫 1, 柯权力 1https://www.jmcchina.org/ch/reader/create_pdf.aspx?file_no=20220109&year_id=2022&quarter_id=1&falg=1
4.北京大学:贵金属单原子材料的水分解催化研究进展北京大学郭少军教授团队总结了具有优异性能的贵金属单原子催化剂在电化学水分解催化领域的最新研究进展。http://m.xincailiao.com/news/app_detail.aspx?id=603003&ptype=1
5."点金术"的现实版:揭秘单原子催化剂在绿色化工中的“超能力”!五、单原子催化剂的多彩世界:类型与应用领域广泛 据可靠报道,单原子催化的神秘研究中,涉及到的单原子种类已经多达 30 多种,如同一个丰富多彩的元素宝库。常见的主要有 Pt、Pd、Au、Ir、Ag、Rh 等珍贵的贵金属,它们如同闪耀的宝石,散发着迷人的光芒。还有 Fe、Co、Ni、Cu 等非贵金属,它们如同低调的勇士,默默发https://www.xianjichina.com/special/detail_555807.html
6.单原子催化剂综述梳理:基本概念制备方法及能源催化应用本文论述了金属单原子催化剂的研究进展,并重点关注单原子催化剂的发展;主要讨论了合成过程、表征、反应机理、催化剂表面金属原子结构的精确控制、结构–性能关系、应用和挑战。本文从合成方法的角度综述了单原子催化剂的稳定策略,并详细分析了它们的优缺点;重点讨论了聚合物在制备或催化反应过程中作为合成模板、金属单原子https://www.scholat.com/userPostMsgPage-getDynamic.html?usermessageid=209716
7.我国科学家在单原子分散贵金属催化剂研究方面取得新突破贵金属催化剂被广泛应用于环保、能源和化工等领域。由于贵金属资源稀缺、价格高昂,因此如何提高原子利用率是贵金属催化剂制备的核心问题。将贵金属单原子分散可以有效提高原子利用率,但为了避免团聚,其金属负载量很难提高(多低于0.5wt%)。这不仅限制了单原子分散催化剂的工业应用前景,也导致了金属活性中心的精细结构很https://www.nsfc.gov.cn/publish/portal0/tab440/info55810.htm
8.羟基磷灰石负载贵金属亚纳米/单原子催化剂的创制及其醇类选择性批准年份:2019 前往基金查询 项目简介 项目名称 羟基磷灰石负载贵金属亚纳米/单原子催化剂的创制及其醇类选择性氧化反应性能研究 项目批准号 21902040 学科分类 B020103化学科学 资助类型 青年科学基金项目 负责人 唐海莲 依托单位 河北大学 批准年份 2019 起止时间 https://www.medsci.cn/sci/nsfc_show.do?id=570e8961622f
9.一种单原子催化剂及其制备方法摘要:一种单原子催化剂及其制备方法,该方法包括:首先采用金属有机盐缓慢水解使其以单分子层氧化物的高分散形式包覆在氧化物载体表面,获得缺陷均匀的过渡金属氧化物层,然后将载体在贵金属硝酸合氨盐水溶液中润湿产生丰富的羟基,然后选择性地吸附贵金属硝酸合氨盐溶液中的贵金属?氨络合物,从而在载体表面形成单原子或者https://www.lotut.com/zhuanli/detail.html?id=603227e92be3bfb288676b85
10.科学网—单原子的高温捕获—提高单原子催化剂的热稳定性引言:通过在载体上构建原子级别分散的贵金属位点来提高催化活性与选择性在多相催化领域引发了广泛的关注。然而在实际催化反应过程中(诸如高温下),这类单原子催化剂的热稳定却是有限的,这限制了此类催化剂的实际应用。这是因为原子级别分散的金属离子位点在高温下容易发生迁移,团聚形成纳米颗粒从而失去独特的结构与性能。https://wap.sciencenet.cn/home.php?mod=space&do=blog&id=1244086
11.lpop原子用于氧还原反应(ORR)、析氢反应(HER)、氧释放反应(OER)、二氧化碳还原反应(CO2RR)和氮还原反应(NRR)中的各种电催化剂是这些系统的重中之重。其中碳载单原子催化剂(CS-SAC)引起了极大的关注,因为它可以实现超高的金属原子利用效率,低配位环境,独特的量子尺寸效应以及可调节的金属-碳载体相互作用,从而增强了金属https://blog.csdn.net/weixin_39797780/article/details/109976846