贵金属纳米材料极简史–材料牛

目前的宇宙学研究表明人们梦寐以求的贵金属元素诞生于中子星合并以及超新星爆炸。贵金属,特别是金,化学性质稳定,在自然界中可以单质形式存在。距今约七八千年前,尼罗河畔的古埃及人在地球上最早发现并使用了黄金。而黄金的稀缺性让人们自古以来就希望可以人工合成黄金。从公元一世纪起,西方的炼金术师们便开始了逐梦之旅,他们满怀憧憬地搭建起一个个简陋而危险的实验室,企图把常见金属炼化为黄金。而在东方,战国时期阴阳家学派创始人邹衍为炼丹术的发展提供了理论基础。刘邦的孙子,淮南王刘安酷爱炼丹,与门客们合著《淮南子》,上书“为神丹既成,不但长生,又可以作黄金”。虽然现代科学已经让人们明白古代的炼丹术与炼金术是行不通的,但是它们为化学的发展做出了极大的贡献。

贵金属纳米材料

更为神奇的是,早在公元四世纪时,人们已经将贵金属纳米粒子应用在了日常生活之中。罗马人使用分色玻璃制作了莱克格斯杯(LycurgusCup),当光线从不同方向照射杯子,杯子呈现不同的颜色。现代研究发现莱克格斯杯中的“色彩魔术师”实际上是分色玻璃中的金银纳米颗粒。1847年,法拉第(MichaelFaraday)用磷来还原三氯化金溶液制备得到了金纳米颗粒,并且观察发现了不同大小的金纳米颗粒具有不同的颜色。1951年,Turkevich等人使用柠檬酸来还原氯金酸合成了金纳米颗粒。这种方法至今仍是合成金纳米颗粒的常用方法之一。二十世纪五十年代末,RichardFeyneman提出了在原子尺度上搭建新的微观世界,创造新物质,并且研究其性质应用的思想。这被视为纳米研究的思想起源。到了七十年代末期,MIT的K.EricDrexler认为我们可以模仿细胞中生物分子,并将人工合成的分子进行组装和排布。他将此称之为纳米技术。1984年,原联邦德国萨尔蓝大学Gleiter团队采用原位加压法将金属钯粉制成6nm大小的纳米颗粒,具有划时代意义。

随着科学仪器设备的进步和发展,人们开始可以对纳米甚至更小尺度的金属材料进行物理化学性质的研究。由于超小尺寸带来的量子效应包括表面效应、量子尺寸效应和宏观量子隧道效应等特性使得贵金属纳米材料变得愈发“神通广大”。从二十世纪末到现在,对贵金属纳米材料的研究日新月异。研究者们发现纳米金具有优异的催化性能,这打破了人们对于块体金化学惰性的固有印象。在所有金属中,银表现出最优异的导电率、导热率以及反射率。银纳米颗粒也表现出独特的性质,在催化、医药、生物、成像、光学等领域大展身手。

关于铂最初的记载出现于十八世纪四十年代。1741年,英国人CharlesWood于牙买加发现了铂样本,随后寄给WilliamBrownrigg进行分析。1750年,Brownrigg将对于铂的研究报告提交给了皇家学会。但是,西班牙人安东尼奥·乌略亚(AntoniodeUlloaydelaTorre-Girault)在两年前,也就是1748年,已经发表了关于铂的研究报告。二十世纪初,人们制备出了铂黑,并将其用作催化剂。如今铂基纳米材料已经是不可或缺的优异催化剂,在氢氧化、氢析出、氧还原、汽车尾气处理、一些石油化工反应等重要反应中无有出其右者。铂类分子配合物,如顺铂,更是疗效显著的抗癌药物。

钯是贵金属中熔点最低、密度最低的。钯纳米材料在有机催化、燃料电池电极反应、储氢、生物医药等领域发挥着不可取代的作用。1803年英国化学家威尔亚姆.沃尔拉斯统(WilliamHydeWollaston)发现钯之后很快便发现了铑。铑基纳米材料也是重要的工业催化剂,主要用作汽车尾气催化剂。另外在玻璃工业、镶牙合金业和珠宝业等行业也可以看到铑基材料的身影。

1803年,英国化学家SmithsonTennant在铂矿石中发现了铱。他以希腊神话中的彩虹女神Iris之名将新元素命名为“Iridium”。1844年,俄罗斯籍的波罗的海德意志科学家KarlErnstClaus在喀山大学发现了钌。钌和铱的分子配合物是极佳的光敏剂。钌和铱基的配合物以及纳米材料也是有机不对称加氢和针对多种氧化反应的极好的催化剂。

锇也由Tennant发现,是自然界中密度最高的元素,有22.59g/cm3。锇及其合金在石油炼化中可以作为催化剂使用。另外,在电子工业上,锇基材料可做电子元器件用,比如电阻、继电器和热电偶等。锇还可作为制造光学玻璃时的容器内衬。另外,钟表和仪器中的轴承和钢笔尖等也多采用锇铱合金制作而成。

总体上,贵金属纳米材料已经被广泛用作催化剂、助燃剂、导电浆料、电极材料、磁流体、吸波材料和纳米药物等,在冶金工业、电子电器、先进陶瓷、生物医药工程、农业、化工、光电器件、环境、新能源和先进国防等领域发光发热。

贵金属纳米材料结构调控的最新进展

图一动力学控制的两种在Pd十面体上生长Au的模式(J.Am.Chem.Soc.2023,145,13400)。

随着人们对贵金属纳米结构的深入研究,越来越多的贵金属纳米材料被合成出来。其中大部分材料至少在某一维度尺寸在1-100nm的范围内。如果贵金属材料的尺寸继续减小到1nm以下,他们还能稳定存在吗?会表现出什么样的性质呢?这些问题促使研究者们合成更加精细的贵金属纳米材料。2017年,J.R.Regalbuto教授课题组以二氧化硅为载体,采用静电吸附法(Electrostaticadsorptionmethod),通过pH调节使得二氧化硅表面-OH去质子,从而可以吸附带正电的贵金属前驱体,再在氢气中进行热还原得到了一系列超小(~1nm)、均匀合金的双金属纳米颗粒(如图二左半部分,Science2017,358,1427–1430)。2019年,郭少军教授课题组采用水热合成法得到了PdMo双金属烯(PdMobimetallene),其为高度弯曲的纳米片,厚度小于1nm(Nature2019,574,81–85)。王训教授课题组发展了一系列亚纳米尺度材料的合成方法,其中便包括厚度仅为0.7–0.9nm的亚纳米Pd纳米带(CCSChem.2019,1,642–654)。虽然超小的贵金属纳米材料也可以被制备,但是就像世界上没有完全相同的两个人,纳米粒子在尺寸、组成和结构上也几乎不可能是完全相同的(如图二右半部分,Science,2020,368,60)。

图二超小、均匀合金的双金属纳米颗粒(Science2017,358,1427–1430)以及不完全相同的Pt纳米颗粒(Science,2020,368,60)。

幸运的是,贵金属团簇的发现为科学家们提供了理想的研究体系,其具有类分子特性,内部原子结构与表面配体结构精确。著名生物化学家RogerD.Kornberg教授课题组于2007使用X射线单晶衍射给出了Au102团簇的结构,分辨率达到1.1(Science2007,318,430-433)。如图三所示,这个Au纳米团簇包括102个金原子以及44个对巯基苯甲酸配体。2009年,RongchaoJin教授团队报道了具有硫醇配体的Au25纳米团簇(J.Mater.Chem.2009,19,622-626)。2017年,AmalaDass教授组合成了Au279团簇,此团簇为给出明确晶体结构的最大的贵金属Au团簇(J.Am.Chem.Soc.2017,139,15450-15459)。光谱研究表明,在510nm处,该团簇具有明显的等离子体共振吸收峰。一年后,朱满洲教授报道了当时最小的合金纳米团簇—Cd1Au14(StBu)12,并给出了其单晶衍射结构(J.Am.Chem.Soc.2018,140,1098810994)。

图三Au102团簇的结构(Science2007,318,430-433)。

图四Rh-WOx对催化剂(Nature2022,609,287-292)。

图五液态金属参与合成的高熵合金纳米颗粒(Nature2023,619,73–77)。

俗话说金无足赤,人无完人。其实,合成出完美的理想材料是极具挑战的。但是有缺陷就一定是坏事吗?经过多年的研究,学者们发现贵金属基纳米材料中的各种缺陷所引起的材料电子结构的改变,对调节其光学、电学、磁学和催化等性质有决定性的影响(Chem.Sci.2020,11,1738-1749)。2017年,MatthewW.Kanan教授使用先进的电化学扫描显微镜直接观察到了Au电极的晶界具有明显高于晶畴表面的电化学二氧化碳还原活性(Science2017,358,1187-1192)。这个突破性的工作掀起了开发晶界富集金属纳米催化剂的热潮。最近,张华教授课题组采用一锅湿化学合成法得到了具有多种缺陷结构的异相AuCu多级纳米片,如图六,其缺陷结构包括非常规的2H晶相、2H/fcc相界、边缘台阶位点(高指数晶面)、堆叠层错、孪晶界以及晶界(Adv.Mater.2023,10.1002/adma.202304414)。由于其独特的结构,2H/fccAu99Cu1多级纳米片表现出优异的电催化二氧化碳还原性能。

图六2H/fccAu99Cu1多级纳米片(Adv.Mater.2023,DOI:10.1002/adma.202304414)。

对贵金属纳米材料进行应力调节,被认为对调控其d带电子中心,从而调节其催化活性具有重要意义(Nat.Rev.Mater.2017,2,17059)。金明尚教授课题组通过P原子在Pd@Pt核壳纳米立方体中的掺杂和脱出,实现了对Pt表面应力的系统性连续调节(Nature2021,598,76–81)。随后,张华教授课题组通过外延生长实现了对亚稳态fcc-2H-fcc晶相Pd的晶格拉伸(J.Am.Chem.Soc.2022,144,1,547–555)。近日,伍志鲲教授课题组通过配体工程,在约1nm尺度上,实现了对Au52团簇的晶格压缩(如图七,Angew.Chem.Int.Ed.2023,e202308441)。

图七Au52团簇的晶格压缩(Angew.Chem.Int.Ed.2023,e202308441)

图八4HAu纳米带(Nat.Commun.2015,6,7684);2HAu纳米片(Nat.Commun.2011,2,292);以及异质结构的金属间纳米材料(Nat.Syn.2023,2,749–756)。

合成制备具有手性结构,特别是原子级手性结构的贵金属纳米材料被认为对手性催化、手性光学、电磁学、偏振控制、负折射率材料以及手性传感等领域具有重大意义。2018年,KiTaeNam教授团队以手性氨基酸和多肽作为结构导向剂,合成了手性等离激元Au纳米颗粒(Nature,2018,556,360–365)。2020年,LuisM.Liz-Marzán教授以配体分子形成的手性软模板为诱导,合成了具有手性活性的各向异性纳米Au棒(如图九,Science2020,368,1472-1477)。

图九手性纳米金棒(Science2020,368,1472-1477)。

图十对胶体分子形成的实验以及模拟研究(Science2020,369,1369-1374)。

THE END
1.贵金属材料范文12篇(全文)现阶段应用最广泛的电接触材料是贵金属基合金。贵金属基电接触材料具有较高的导电和导热性、高化学稳定性、低而稳定的接触电阻、高抗熔焊性和高抗电弧侵蚀等优良性能,一直被认为是最好的电接触材料,尤其在接通和断开装置中表现出优异的综合性能,因此在许多电接触应用领域都选择其作为触点材料[1]。 https://www.99xueshu.com/w/ikeyedsjn0l4.html
2.以下哪些属于贵金属材料?声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任 https://www.shuashuati.com/ti/b478a2951ea54c8d9c1dd3f97902de82.html?fm=bd85061c3cbd62f718193e380eaf40c49f
3.常见贵金属有哪些分类?1贵金属产品的分类 根据用途及组成的不同,贵金属产品可大致分为纯贵金属、贵金属合金材料、贵金属化合物、贵金属催化剂、贵金属浆料5大类。 1.1纯贵金属 纯贵金属或高纯贵金属指主成分含量高于99.9%、仅含有痕量或超痕量杂质的金属。它既是冶金生产的产品,又是加工生产其它贵金属产品的原料,其纯度(贵金属质量分数http://www.au88888.com/cn/news_detail.asp?ID=43
4.冶金材料(精选十篇)目前,甘肃省在冶金有色新材料产业发展方面需求铜、铝、镍、钴高性能金属及合金结构材料装备及先进加工技术,镍钴铜与贵金属精深加工、铝型材、铝合金深加工、有色金属新能源材料、铜铅锌冶炼与加工、新型不锈钢薄板、稀土新材料制备和先进加工技术,以及资源综合高效利用与环境保护方面技术与研究成果。 https://www.360wenmi.com/f/cnkey2n2r125.html
5.一种贵金属单原子分散于非贵金属基底表面的纳米材料及其制备方法6.贵金属在非贵金属表面负载,一方面贵金属对氯离子强吸附不易脱附使其具有高析氧反应选择性,另一方面贵金属保护非贵金属基底不被腐蚀。基底非贵金属与单原子贵金属具有强相互作用,使得贵金属不易脱落具有高稳定性。 7.本发明第一方面提供一种贵金属单原子分散于非贵金属基底表面的纳米材料,所述纳米材料包括:非贵https://www.xjishu.com/zhuanli/46/202210369875.html
6.宝石鉴定课初级——贵金属材料(手帐版)总之,凡是拿贵金属材料制成的首饰或摆件,都可以成为贵金属饰品。 到底贵金属是什么呢? 我们生活中熟知的“金、银、铂”都是贵金属材料。 “宝石、玉石、塑料、木材”等是非贵金属材料。 下面一一用图片来说明 黄金——听上去是不是两眼放光呢? 其实不用特别稀奇,它就是一个化学元素,通过人工的加工,和一度作https://www.jianshu.com/p/eec822f3f68b
7.第3分会场:碳基催化材料与碳催化过程贵金属材料对硝基的转化表现出优异的催化性能,但存在成本高和稳定性问题,限制了其工业应用。碳材料催化剂由于其丰富孔隙结构、高热/化学稳定性和易表面改性等内在优势,既可作为金属基催化剂载体又能够自身作为无金属催化剂,是目前极具开发前景的非均相催化剂。https://www.csp.org.cn/meeting/9thCarbonCatalysis/a2586.html
8.北京科技大学新材料技术研究院阐明了铝酸盐蓝绿粉碱熔崩塌机理,开发了具有自主知识产权的两段式酸解工艺,稀土总回收率大于90%,其中Y和Eu回收率大于95%,Ce和Tb回收大于70%。该成果已投入工业化应用,提高了废旧稀土发光材料的资源价值。研究成果获中国有色金属学会科技论文奖一等奖。 7、冷轧油泥绿色高值化利用技术的开发https://adma.ustb.edu.cn/xygk/szdw/gnclyjs/cgnjhjclyjs/index.htm
9.西安诺博尔稀贵金属材料股份有限公司证券简称: 西诺稀贵 证券代码: 873575 西安诺博尔稀贵金属材料股份有限公司 西安诺博尔稀贵金属材料股份有限公司招股说明书(申报稿) 1-1-1 中国证监会和北京证券交易所对本次发行所作的任何决定或意见,均不表明其对注册申 请文件及所披露信息的真实性,准确性,完整性作出保证,也不表明其对发行人的盈利能力, http://file.finance.sina.com.cn/211.154.219.97:9494/MRGG/SBGG/2023/2023-9/2023-09-05/9505418.PDF
10.郴州高鑫材料有限公司公司黄页郴州高鑫材料有限公司为高鑫铂业投资新建的生产基地,成立于2014年,注册资本3180万元,公司秉承“稳健经营、持续创新、绿色发展”的发展战略,一直专注发展稀贵金属催化材料、稀贵金属化学品以及稀贵金属二次资源循环利用,主要服务于石油化工、药物合成、环境治理、航空航天和新能源等行业,产品性能和技术达到国内先进水平,https://china.guidechem.com/suppliers/com-a835872.html
11.牙医喊您来看适合您的牙冠材料啦!降科普金属冠是所有牙冠中最结实的一种。所以当您的患牙位于后牙区,很少显露不容易被人看到时,可以选择金属冠修复。由于金属强度较高,所以在有些咬合力比较大,或者牙冠高度不够,医生会告诉您只能做金属冠。 而在金属全冠中,又可以选择贵金属和非贵金属两种材料。非贵金属大多含有镍,容易过敏的患者不宜选用,有些患者尽管http://www.hnszsy.cn/detail/4103.html