扩散的好坏直接决定了电池片的好坏,所以对于扩散车间的管控逐渐成为各大厂商日益重视的焦点,扩散车间工艺人员的培养也直接决定了扩散车间的好坏。
湿制程是太阳能电池片生产工序的开端,从上级厂家或者上级原材料工厂获得的电池片原片将从这里开始他新的生涯,作为电池片生命生涯的开始,制绒等湿制程也是整个生产过程中最难控制的工序之一。
一、制绒的目的
去除机械损伤层——主要来自原片切割过程中的表面损伤;
增加电池片表面面积——为扩散增加制结面积准备;
陷光原理——大大降低电池片表面反射率;
去除杂质——HF可以去除电池片表面油污、HCL去除金属杂质;
多晶绒面
单晶绒面
因单多晶晶体结构差异,考虑到效率因素,多晶常用酸制绒,单晶多用碱制绒。多晶制绒面为不规则凹凸面,单晶制绒面为规制类金字塔结构。主要原因是多晶内部晶体排列方式杂乱所致,具有各项同性。
常见制绒机台
陷光原理是利用光线入射到电池片表面的斜面,进而被反射到另一斜面,以形成多次吸收。入射光在经过多次反射,改变了入射光在硅中的前进方向,既延长了光程,又增加了对红外光子的吸收,同时有较多的光子在靠近PN结附近产生光生载流子,从而增加了光生载流子的收集。
陷光原理
二、制绒工艺流程(多晶为例)
制绒槽→水洗→碱洗→水洗→酸洗→水洗→吹干。
反应方程式:
1:Si+4HNO3=SiO2+4NO2+2H2O
2:SiO2+4HF=SiF4+2H2O
3:SiF4+HF=H2SiF6
2.1:NO2+H2O=HNO3+HNO2
2.2:Si+HNO2=SiO2+NO+H2O
2.3:HNO3+NO+H2O=HNO2
硅片进入含有硝酸和氢氟酸的制绒槽,值得注意的是硅和硝酸及氢氟酸单独均不发生反应,但是当三者同时相处时,反应剧烈,所以制绒槽内各种酸的比例要求严格(主要针对效率方面)。
三、制绒制程控制指标
1、减薄量。减薄量是是制绒工序最重要的控制指标,减薄量等于制绒前重量减去制绒后重量。它能够直接反应硅片在制绒工序的反应程度,间接反应绒面好坏,减薄量过大或者过小都会引起最终电池片的效率。减薄量的影响因素:制绒槽温度、药液浓度、比例、流量、怠速等
2、制绒后反射率。制绒后反射率是仅次于减薄量的监控指标,其主要体现电池片表面绒面的好坏,反射率主要的影响因素是减薄量大小以及药液成分的比例。
3、少子寿命等。
值得重要的是不同批次或厂家的硅片在相同药液的机台制绒所获得的电池片减薄量和反射率有所差异。
四、制绒车间常见事项
1、片源统计,根据不同规格电池片采用不同生产工艺,同时通知后道工序更改相应工艺;
2、纯水电导率检测、生产所用均为纯水,纯度不高将直接导致电池片严重的质量问题;
3、空气温度和洁净度,电池片是就像襁褓中的婴儿,任何风吹草动都会引起相当大的后果;
4、化学浓度分析,对制绒槽药液进行定期分析,以便调整。
北极星太阳能光伏网讯:扩散通俗讲就是给太阳能电池片制造最核心的部分,是太阳能电池片的心脏,是利用POCl3磷扩散制PN结的过程,是扩散工艺的好坏也直接影响电池片效率的多少,通常的公司都会采取0或1的管控措施,电池片经过扩散工序,对于扩散有差异电池片直接返工(制绒之前)。
值得注意的是制PN结并非单纯的将两个不同的电池片(P型硅和N型硅)叠加在一起,P型硅和N型硅必须产生良好的内部接触,因此通常采用在P型硅片的一面扩散制成N型。
一、扩散的方法
1.三氯氧磷(POCl3)液态源扩散
2.喷涂磷酸水溶液后链式扩散
3.丝网印刷磷浆料后链式扩散等等
目前国内多采用第一种方法(稳定、可控性强)。
二、POCl3扩散的原理
POCl3在高温下(>600℃)分解生成五氯化磷(PCl5)和五氧化二磷(P2O5),其反应式如下:
生成的P2O5在扩散温度下与硅反应,生成二氧化硅(SiO2)和磷原子,其反应式如下:
由上面反应式可以看出,POCl3热分解时,如果没有外来的氧(O2)参与其分解是不充分的,生成的PCl5是不易分解的,并且对硅有腐蚀作用,破坏硅片的表面状态。但在有外来O2存在的情况下,PCl5会进一步分解成P2O5并放出氯气(Cl2)其反应式如下:
生成的P2O5又进一步与硅作用,生成SiO2和磷原子,由此可见,在磷扩散时,为了促使POCl3充分的分解和避免PCl5对硅片表面的腐蚀作用,必须在通氮气的同时通入一定流量的氧气。
在有氧气的存在时,POCl3热分解的反应式为:
POCl3分解产生的P2O5淀积在硅片表面,P2O5与硅反应生成SiO2和磷原子,并在硅片表面形成一层磷-硅玻璃,然后磷原子再向硅中进行扩散,POCl3液态源扩散方法具有生产效率较高,得到PN结均匀、平整和扩散层表面良好等优点,这对于制作具有大面积结的太阳电池是非常重要的。
三、扩散车间控制指标
2、结深、表面浓度等、测量难度较大,通常不轻易测量。
四、扩散车间常见事项
1、磷源安全。三氯氧磷属于剧毒物(小编听说吸一口就会嗝屁),磷源一般有专门密闭储藏室,且扩散车间一般与其他车间分离,做简单密闭处理,车间内设置有磷源泄露检测装置(小编提醒,企业要定期检查传感器状态避免失灵,对于一些小企业对于剩余磷源采取人工倒灌以节省成本的做法也表示强烈抗议)。
2、方阻监测。相对于其他材料,方阻的测量由于经过扩散,其大小受光线影响较大,工人分批次测量时必须督促其关闭屏蔽罩。
3、洗舟检查。石英舟是承载电池片进入扩散炉管的特殊材质的舟,由于需要重复使用,长期的不清洗会导致电池片效率下降严重。
4、温度参数校队。扩散机台在扩散过程中对于温度极为敏感,且每一几天温度参数较多,且都数值较大,经常发生人工更改温度出现输错情况,后果严重。
5、检查车间内,气体压力、磷源最低刻度、负压是否正常,异常情况通知外围调整。
6、匹配丝网印刷,不同方阻所匹配的丝网工艺不同,以达到最佳的转换效率。
五、总结
北极星太阳能光伏网讯:扩散过后的下一个工序是刻蚀,由于扩散采用背靠背扩散,硅片的边缘没有遮挡也被扩散上磷(边缘导通状态),太阳能电池PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路,太阳能电池片会因此失效。同时此短路通道等效于降低并联电阻。另外由于在扩散过程中氧的通入,硅片表面会形成一层二氧化硅,在扩散炉高温的作用下POCl3与O2形成的P2O5,部分P原子进入Si取代部分晶格上的Si原子形成n型半导体,部分则留在了SiO2中形成PSG(磷硅玻璃)。
1、磷硅玻璃会使得电池片在空气中表面容易受潮,导致电流和功率的衰减;
2、死层增加了发射区电子的复合,以致少子寿命的降低,进而降低了Voc和Isc;
3、磷硅玻璃会使得PECVD后产生色差。
一、刻蚀的原理
工艺流程:上片→蚀刻槽(H2SO4HNO3HF)→水洗→碱槽(KOH)→水洗→HF槽→水洗→下片
刻蚀槽HNO3和HF的混合液体会对扩散后硅片的下表面及边缘进行腐蚀,以去除边缘的N型硅,打破硅片表面短路通路。因此刻蚀对于液位高度的控制需要特别精确。反应方程式:
3Si+4HNO3+18HF=3H2[SiF6]+4NO2+8H2O
去PSG磷硅玻璃的原理方程式:
SiO2+4HF=SiF4+2H2O
SiF4+2HF=H2[SiF6]
SiO2+6HF=H2[SiF6]+2H2O
当电池片从HF槽出来后,可观察其表面脱水情况,如果脱水效果良好,则代表磷硅玻璃已去除较干净;如果表面水珠较多,则代表磷硅玻璃未被去除干净,可添加适量HF到HF槽中。
二、刻蚀工序工艺指标管控
当电池片经过刻蚀机台出来时,首先检查硅片表面,绒面是否明显斑迹,是否有药液残留。该工序一般要求面腐蚀深度控制在0.8~1.6μm范围内,同时硅片表面刻蚀宽度不超过2mm,刻蚀边缘绝缘电阻大于1K欧姆。
对于刻蚀程度可以通过刻重来衡量——刻蚀前重量减去刻蚀后重量。对于刻重的要求,不同公司有不同的要求,一般远小于制绒减薄量。
疏水性测试,刻蚀后电池片需要=定时抽检电池片疏水性,疏水性可反映扩散的好坏。
反射率,主要与刻重、电池片和药液有关
三、刻蚀车间常见事项
异常处理,刻蚀车间和制绒车间极其类似,机台叠片、碎片、吹不干、残留和色斑等常见问题等都极为相似,机台的维护、抽风、流量等引起的工艺问题类型也多相似。
1、纯水电导率检测、生产所用均为纯水,纯度不高将直接导致电池片严重的质量问题;
2、空气温度和洁净度,电池片是就像襁褓中的婴儿,任何风吹草动都会引起相当大的后果;
3、化学浓度分析,对制绒槽药液进行定期分析,以便调整。
4、返工分类,大过刻、小过刻等返工工艺不同,需要对返工进行区分,送至制绒车间。
四、总结
刻蚀车间的机器和制绒车间几乎是同样的,同样的RENA机器进行稍微的改动就可以使用在不要的工序,同样制绒车间面临的问题刻蚀车间也同样存在,维护繁琐,有安全隐患等(具体可参见太阳能电池片科普系列制绒篇)。刻蚀也属于湿制程,对药液寿命、药液成分比例、外围都同样较为敏感,问题出现都是批量性的,问题处理上只能靠经验和数据。
北极星太阳能光伏网讯:硅片的主要生产流程为:硅料→多晶铸锭(或继续拉制单晶)→切片→分选包装
切片的主要流程
切割原理:高速运动的镀铜钢线和切削液(具有切削能力的物质如SiC)对工件(硅块)进行持续下压,硅块被切开
2、多晶开方是把粘在操作台上的硅锭制成符合检测要求的硅块,开方包括单晶棒及多晶锭的粘接、加工、清洗、称重、检测等。
3、切磨工序主要是把已开方的多晶硅块通过去头尾及平面、倒角、滚圆等操作加工成符合各项检测要求的硅块和准方棒。
4、粘胶工序就是把硅块用粘胶剂粘结到工件板上,为线切工序做准备。
5、砂浆工序是用碳化硅微粉和悬浮液按一定比例混合而成,是决定硅片切割质量的重要因素之一,浆料区域的主要工作就是为线切机配置及更换砂浆。
多晶硅片
6、切割液的作用
1.悬浮能力:可以有效悬浮碳化硅颗粒,提高切割效率,降低切割消耗。
2.分散能力:可以使碳化硅颗粒在与切割液混合时分布更均匀。
3.润滑性能:可在硅片表面形成保护膜,降低切割阻力,并保证切割出来的成品表面光滑。
4.冷却性能:可以有效的散发热量,降低切割应力。
7、线切工序。是用多线切割机将硅棒或硅块切割成符合要求的硅片,线切割是由导轮带动细钢线高速运转,由钢线带动砂浆形成研磨的切割方式。在线切割机的切割过程中,悬浮液夹裹着碳化硅磨料喷落在细钢线组成的线网上,依赖于细钢线的高速运动,把研磨液运送到切割区,对紧压在线网上的工件进行研磨式切割,
8、清洗工序的主要工作就是将线切工序生产的硅片进行脱胶、清洗掉硅片表面的砂浆。包括三项工作内容:预清洗、插片、超声波清洗。
清洗过后的硅片会被分选,不同级别价格不同,当然不同厂家生产出来的硅片质量不同,随着将本增效浪潮的来临,各大厂商也必须跟随时代潮流,改进产线,降低返工,节省成本。硅料等产业大多是高耗能产业,技术突破才是解决成本等问题的根本途径。
北极星太阳能光伏网讯:PECVD(PlasmaEnhancedChemicalVaporDeposition)等离子增强化学气相沉积,等离子体是物质分子热运动加剧,相互间的碰撞会导致气体分子产生电离,物质就会变成自由运动并由相互作用的正离子、电子和中性粒子组成的混合物。
据测算,光在硅表面的反射损失率高达35%左右,减反膜可以极高地提高电池片对太阳光的利用率,有助于提高光生电流密度,进而提高转换效率,同时薄膜中的氢对于电池片表面的钝化降低了发射结的表面复合速率,减小了暗电流,提升了开路电压,提高了光电转换效率;在烧穿工艺中的高温瞬时退火断裂了一些Si-H、N-H键,游离出来的H进一步加强了对电池的钝化。
由于光伏级硅材料中不可避免的含有大量的杂质和缺陷,导致硅中少子寿命及扩散长度降低,从而导致电池的转换效率下降,H能与硅中的缺陷或杂质进行反应,从而将禁带中的能带转入价带或者导带。
一、PECVD原理
PECVD系统是一组利用平行板镀膜舟和高频等离子激发器的系列发生器。在低压和升温的情况下,等离子发生器直接装在镀膜板中间发生反应。所用的活性气体为硅烷SiH4和氨NH3。这些气体作用于存储在硅片上的氮化硅。可以根据改变硅烷对氨气的比率,来得到不同的折射指数。在沉积工艺中,伴有大量的氢原子和氢离子的产生,使得晶片的氢钝化性十分良好。
在真空、480摄氏度的环境温度下,通过对石墨舟的导电,使硅片的表面镀上一层SixNy。
3SiH4+4NH3→Si3N4+12H2
二、Si3N4
Si3N4膜的颜色随着它的厚度的变化而变化,一般理想的厚度是75—80nm之间,表现为深蓝色,Si3N4膜的折射率在2.0—2.5之间效果最好,通常用酒精来测其折射率。
优良的表面钝化效果、高效的光学减反射性能(厚度折射率匹配)、低温工艺(有效降低成本)、生成的H离子对硅片表面钝化.
三、镀膜车间常见事项
反射率、折射率等的监测、特殊气体的安全等。
表面发白色差片白斑
PECVD是太阳能电池片中比较重要的工序,也是体现一个企业太阳能电池片效率的一个重要指标,PECVD工序一般较忙,每一批电池片都需要监测,且镀膜炉管较多,每一管一般几百片(视设备而定),更改工艺参数后,验证周期较长。镀膜技术是整个光伏行业比较重视的技术,太阳能电池的效率提升可以通过镀膜技术的提升来实现,太阳能电池领域的科学家们也乐此不疲,未来太阳能电池表面技术或许有可能成为太阳能电池理论效率的突破口。
丝网印刷工艺并不是光伏行业独有的工艺方式,其在很多领域都有应用,电池片生产引入丝网印刷,极大的降低了丝网印刷的成本,银浆使用量,银浆是电池片生产过程中最贵的辅料之一,而电池片生产用银浆又与传统银浆有较大的性能差别,技术垄断,导致导电银浆价格一直居高不下,丝网印刷由于其较高的可控性,极大的降低了银浆的消耗量,目前,各大厂商对于导电银浆的使用量都能够做到精细化预估,每百万片电池片所消耗银浆量差值不会超过太多。(小编干这行时,曾经遇到过工人每天刮一点将银带回家,每天一点,后来还是被逮到了,因为工艺成熟了,不像是好多年前工艺不稳定,银浆消耗量忽大忽小。)
一、丝网印刷原理
在光伏行业,丝网印刷主要应用于电池的电极成形,利用丝网图形部分网孔透浆料,非图文部分网孔不透浆料的基本原理进行印刷。印刷时在丝网一端倒入浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。浆料在移动中被刮板从图形部分的网孔中挤压到基片上。印刷过程中刮板始终与丝网印版和承印物呈线接触,接触线随刮刀移动而移动,而丝网其它部分与承印物为脱离状态,保证了印刷尺寸精度和避免蹭脏承印物。当刮板刮过整个印刷区域后抬起,同时丝网也脱离基片,并通过回墨刀将浆料轻刮回初始位置,工作台返回到上料位置,至此为完整的一个印刷行程。
二、丝网印刷流程
三、银电极
银电极的主要作用是输出电流。与电池PN结两端形成欧姆接触,P型区接触的电极为电流输出的正极,N型区接触的电极是电流输出的负极。正面电极由两部分构成,主栅线和副栅线,主栅线直接连接电池外部引线,是比较粗的部分,副栅线起到电流收集并传递到主线的作用,是比较细的部分,制作成窄细的栅线状以克服扩散层的电阻。值得注意的是,电极样式,如电极的形状、宽度和密度等,对于太阳电池转换效率影响较大。在电极材料的选择上需要能与硅形成牢固的接触——欧姆接触、接触电阻小;有优良的导电性;纯度适当;化学稳定性好。银的特征氧化数为+1,其化学活动性比铜差,常温甚至加热也不与水和空气中的氧发生反应,同时具有良好的柔韧性和延展性,是导电性和导热性最好的金属材料之一。电池片为了提升效率,正面电极要尽量减少遮光面积,就对电极材料的导电性能有了一定的要求,银作为电极具有耐高温烧结、良好的导电性能及附着力,综合考虑贵金属成本和可获取性因素,银是比较适合作为太阳能电池电极材料的。
因为先前的减反射膜已经形成正面的电性绝缘,所以银浆一般掺有含铅的硼酸玻璃粉(PbO-B2O3-SiOglassfrit),在高温烧结时玻璃粉硼酸成分与氮化硅反应并刻蚀穿透氮化硅薄膜,此时银可以渗入其下方并与硅形成此种局部区域性的电性接触,铅的作用是银-铅-硅共熔而降低银的熔点。
浆料可能造成的安全隐患及急救措施,眼部接触浆料会导致发红及疼痛;皮肤长期直接接触浆料会导致皮肤水分散失,同时有可能导致皮炎;浆料吸入可刺激呼吸系统,可能导致头晕或者头痛,从而引发行动迟缓或其他相应症状;不慎食入少量(不会致癌),浆料本身仅具有轻微毒性,但若不慎进入肺部,则可能引发肺损伤,甚至死亡。
四、铝背场
铝作为背电场能够阻挡电子的移动,减小了表面的复合率,有利于载流子的吸收;减少光穿透硅片,增强对长波的吸收;Al吸杂,形成重掺杂,提高少子寿命;铝的导电性能良好,金属电阻小,而且铝的熔点相对其他的合适金属来说熔点低,有利于烧结;在烧结时p-type的铝掺杂渗入形成使原本掺杂硼的p-typeSi形成一层数微米厚的p+-typeSi作为背场,以降低背表面复合速度来提高电池的开路电压Voc;因为硅片吸收系数差,当厚度变薄时衬底对入射光的吸收减少,此时背场的存在对可以抵达硅片深度较深的长波长光吸收有帮助,所以短路电流密度Jsc的影响就更明显;p和p+的能阶差也可以提升Voc,p+可以形成低电阻的欧姆接触所以填充因子FF也可改善。
五、丝网工序常见事项
1、第一道背面银电极,第二道背面铝背场的印刷和烘干,主要监控印刷后的湿重;第三道正面银电极的印刷,主要监控印刷后的湿重和次栅线的宽度。第二道道湿重过大,一方面浪费浆料,同时还会导致其不能在进高温区之前充分干燥,甚至不能将其中的所有有机物赶出从而不能将整个铝浆层转变为金属铝,另外湿重过大可能造成烧结后电池片弓片。湿重过小,所有铝浆均会在后续的烧结过程中与硅形成熔融区域而被消耗,而该合金区域无论从横向电导率还是从可焊性方面均不适合于作为背面金属接触,另外还有可能出现鼓包等外观不良。第三道道栅线宽度过大,会使电池片受光面积较少,效率下降;
2、隐裂片:保持电池片背面和印刷台面平整,注意各道印刷台面和网版内不要有碎片等大的异物,必要时更换台面纸,清洗网版并处理混有异物的浆料;
3、粘片:按照形式来分可以分为连续的粘片和非连续的粘片。对于连续的粘片,往往是由于印刷参数设置不合理导致的,主要有snap-off设置太低,或者网版的PARK位置太低,印刷压力过大等原因,有时台面真空不足也会造成此类问题,也有些情况下如果浆料的粘度过大也会造成粘片,特别是对于搅拌不足的浆料尤其容易发生粘片;对于非连续粘片,一般是正对某个台面的问题,一般可能是由于台面纸透气性比较差,或者某个台面的真空有问题;
北极星太阳能光伏网讯:通常意义上烧结是将粉末或粉末压坯加热到低于其中基本成分的熔点的温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得所需的物理、机械性能的制品或材料。太阳能电池片的烧结方法于此类似,烧结是和丝网工序密不可分的一个部分,烧结的好坏也直接影响丝网印刷的好坏,烧结的过程主要是将丝网印刷好了的正负电极在高温的作用下与硅片形成良好的接触——欧姆接触,从而提高太阳能电池片的开路电压和填充因子,同时烧结炉内的高温可以促使镀膜工艺过程中产生的H向电池内部扩散,对太阳能电池片有良好的钝化作用,提高太阳能电池的转换效率。
一、烧结的原理
丝网印刷工序后会有烘干炉,经过烘干炉的电池片,浆料里含有的有机物等得以挥发,此时我们认为他是接触的,再经过烧结炉时,金属电极材料和电池片表面硅在红外线的加热作用下达到材料的共晶温度,此时硅原子会进入到熔融状态的金属电极材料当中,形成合金系统,当温度下降到一定范围时,合金系统中硅原子会重新结晶,在硅片和金属电极之间形成外延层,形成良好的欧姆接触。整个烧结过程是非常快速的,一般十几秒就会完成整个烧结。
二、烧结的步骤
烧结是一个扩散、流动和物理化学反应多重综合作用的过程。印刷良好的前提下,各温区温度、气体流量、带速等是影响烧结效果的重要因素。因为要形成良好的接触,就必须达到一定的温度,由于Ag、Al与Si等的性质不同,就需要不同温区来分别实现他们的合金化。
将印刷好的上,下电极和背场的硅片经过网印刷机的传送带传到烧结炉中,经过烘干排焦、烧结和冷却烘干排焦、烘干排焦烧结和冷却过程来完成烧结工艺最终达到上下电极和电池片的欧姆接触。
1、烘干排焦一
在网带的上、下都装有加热带,由温控仪控制其温度。目的是将印刷有浆料硅片烘干,并使浆料内绝大部分焦油挥发出来。如果温度设置不合理,不能使大部分焦油从浆料中挥发出来,剩下的焦油在进入下一区域时会对烧结的效果影响很严重,对转换率有高达0.2%的影响。为了保证设备安全,在每个区域都设有2个热电偶,一个用于温度控制,一个用于过温保护。
2、烘干排焦二
为了减少腔室内热量的损失,在设备强势内部的四周安装上隔热板,并在腔室外的两边装上了铝的隔热反射板,让整个腔室始终保持一个稳定的温度,有利于工艺的稳步进行。对流器:对流器:为了能让从浆料中挥发的焦油全部从抽风管道中抽走,设计了一个对流加热器。从烘干区上部的对流加热器中吹出温度受控的气体,吹到腔室中,在从烘干区的两头将气体抽出,保证从硅片挥发出来的焦油被对流加热器吹出的热气带出腔室内,而不会导致硅片挥发出来的热焦油在机器出口处冷凝而回流到设备里。对流盒子内置在加热盒子里,经过过滤的大气被热空气风扇吸入到一个温度可控的加热器中,最后进入到腔室内。但为保证安全操作,如果吸入的空气总量在增加,相应离开的总量必须是合适的。
3、快速加热烧结
4、冷却
冷却盒子是一个可循环的盒子,为了冷却电池片和皮带,运送冷却水的管道安装在皮带的上部和下部。冷却风扇分别安装在循环水管道的上方和下方。风速可以调整,上部的风扇将周围的空气通过冷却管道送到硅片和皮带上,下面的风扇吸走通过皮带周围和硅片底部的空气。
烧结温度曲线
烧结各温区作用
烘干区:使有机溶剂脱离浆料烧结区
烧结区:使电极、背场可形成良好的欧姆接触,减小串阻
三、理想的烧结效果
正面电极烧穿氮化硅,镀膜产生的H扩散进硅,背面Ag、Al电极扩散进硅,同时电池片电极有优秀的电性能参数,经过烧结炉的氮化硅颜色应该均匀无色差,最后还要检测栅线是否有断裂、虚印等情况
四、烧结工艺常见事项
1、在设定温度的同时也要考虑到Al的沸点较低,当超过其沸点时,将有Al进入工艺环境。这些会扩散入电池正面的p-n处,对其发生破坏作用。
2、烧结时会有一定量的H从硅片中逸出,必然减弱H对硅片的钝化作用。所以要有激冷的步骤以避免过多H的逸出。
3、高温前,一定要保证浆料中的有机物已经经过烘干并挥发干净。
4、气流过小时会导致排风不畅,使工艺环境中存在大量有害杂质。各个温区的气流要保持平衡。
5、过快的带速和过大的气流会减弱高温的作用。
同时要及时发现弓片、铝泡、断栅、电极缺失等工艺问题并及时处理
烧结之所以重要,是其承载着丝网印刷的所有心血,作为电池片末尾的工序,烧结的成功与否,直接关系到电池片能否走出产线,而受至于工艺难题,高温温度的保持,和温度的均匀化都受到许多因素的干扰,烧结炉实际工艺参数不能时时获取(就目前设备而言),未来烧结技术的发展或许可以着重考虑实际数据的时时监控和智能化调节,让电池片在经历过所有工序后能够全部或几乎全部走下产线。
北极星太阳能光伏网讯:组件工序又可以叫做封装工序,其最大的特点是看似技术含量低,其实不然,封装工序是整条太阳能电池组件生产工序最为严格的工序,封装工艺的好坏直接决定了组件质量的好坏,包括他的寿命,抗暴击的能力,尤其对于衰减率影响比较大,而这些关键的质量指标也恰恰是客户最为关心的,因为他直接关系到客户的收益率,所以封装工序对于企业的意义就不言而喻了。
、
通常我们见到的组件都需要达到一定的三防能力,即防尘防水防摔能力,一般市场上的组件防尘防水能力能够达到IP65级别,IP是IngressProtection的缩写,IP等级是针对电气设备外壳对异物侵入的防护等级,IP68当中的6代表防尘级别的最高级别,代表其能够完全阻止粉尘的进入,IP65中的5是防水级别的5,值得注意的是,等级为5并不是防水能力的最高级别,它仅能抵挡低压任意角度的喷射,防水最高级别为8,多数企业综合考虑工艺成本和用处等因素没有选择最高级别的防水。
一、封装工艺流程
电池分选:太阳能电池片生产线有很强的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。
单焊:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。
串焊:背面焊接是将N张片电池串接在一起形成一个组件串,电池的定位主要靠一个膜具板,操作者使用电烙铁和焊锡丝将单片焊接好的电池的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将N张片串接在一起并在组件串的正负极焊接出引线。
叠层:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA、背板按照一定的层次敷设好,准备层压。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。
修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。粘接接线盒:在组件背面引线处粘接一个盒子,以利于电池与其他设备或电池间的连接。
组件测试:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。
二、组件封装的主要原材料
低铁钢化绒面玻璃(又称为白玻璃):厚度3.2mm±0.2mm,钢化性能或者封装后的组件抗冲击性能达到国标地面用硅太阳电池组件环境实验方法中规定的性能指标,在太阳电池光谱响应的波长范围内(320-1100nm)透光率达91%以上,对于大于1200nm的红外光有较高的反射率。此玻璃同时能耐太阳紫外光线的辐射,透光率不下降。玻璃要清洁无水汽、不得裸手接触玻璃两表面。用作光伏组件封装材料的钢化玻璃,对抗机械冲击强度、表面透光性、弯曲度和外观等。
EVA:晶体硅太阳电池封粘材料是EVA,它是乙烯与醋酸乙烯脂的共聚物。EVA是一种热融胶粘剂,常温下无粘性而具抗粘性,以便操作,经过一定条件热压便发生熔融粘接与交联固化,并变的完全透明,长期的实践证明:它在太阳电池封装与户外使用均获得相当满意的效果。固化后的EVA能承受大气变化且具有弹性,它将晶体硅片组“上盖下垫”,将硅晶片组包封,并和上层保护材料玻璃,下层保护材料TPT(聚氟乙烯复合膜),利用真空层压技术粘合为一体。另一方面,它和玻璃粘合后能提高玻璃的透光率,起着增透的作用,并对太阳电池组件的输出有增益作用。EVA厚度在0.4mm~0.6mm之间,EVA具有优良的柔韧性,耐冲击性,弹性,光学透明性,低温绕曲性,黏着性,耐环境应力开裂性,耐侯性,耐化学药品性,热密封性。不同的温度对EVA的胶联度有比较大的影响,EVA的胶联度直接影响到组件的性能以及使用寿命。在熔融状态下,EVA与晶体硅太阳电池片,玻璃,TPT产生粘合,在这过程中既有物理也有化学的键合。
EVA主要性能指标:熔融指数——影响EVA的融化速度;软化点——影响EVA开始软化的温度点;透光率——对于不同的光谱分布有不同的透过率,这里主要指的是在AM1.5的光谱分布条件下的透过率:密度——胶联后的密度;比热——胶联后的比热,反映胶联后的EVA吸收相同热量的情况下温度升高数值的大小;热导率——胶联后的热导率,反映胶联后的EVA的热导性能;玻璃化温度:反映EVA的抗低温性能;断裂张力强度——胶联后的EVA断裂张力强度,反映了EVA胶联后的抗断裂机械强度;断裂延长率——胶联后的EVA断裂延长率,反映了EVA胶联后的延伸性能;张力系数——胶联后的EVA张力系数,反映了EVA胶联后的张力大小;吸水性——直接影响其对电池片的密封性能;胶连率——EVA的胶联度直接影响到它的抗渗水性;剥离强度——反映了EVA与玻璃的粘接强度;耐紫外光老化——影响到组件的户外使用寿命;耐热老化——影响到组件的户外使用寿命;耐低温环境老化——影响到组件的户外使用寿命等。
TPT(聚氟乙烯复合膜),用在组件背面,作为背面保护封装材料。厚度0.17mm—0.35mm,纵向收缩率不大于1.5%,用于封装的TPT至少应该有三层结构:外层保护层PVF具有良好的抗环境侵蚀能力,中间层为聚脂薄膜具有良好的绝缘性能,内层PVF需经表面处理和EVA具有良好的粘接性能。封装用Tedlar必须保持清洁,不得沾污或受潮,特别是内层不得用手指直接接触,以免影响EVA的粘接强度。太阳电池的背面覆盖物—氟塑料膜为白色,对阳光起反射作用,因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。当然,此氟塑料膜首先具有太阳电池封装材料所要求的耐老化、耐腐蚀、不透气等基本要求。增强组件的抗渗水性。对于白色背板TPT,还有一种效果就是对入射到组件内部的光进行散射,提高组件吸收光的效率。
互连条与汇流条:互连条与汇流条即涂锡铜合金带,简称涂锡铜带或涂锡带。分含铅和无铅两种,其中无铅涂锡带因其良好的焊接性能和无毒性,是涂锡带发展的方向。无铅涂锡带是由导电优良、加工延展性优良的专用铜及锡合金涂层复合而成。具有可焊性好、抗腐蚀性能好及长期工作不会脱落等特点。
助焊剂:作用是帮助焊接,除去互连条上的氧化层,减小焊锡表面张力。良好的助焊剂PH值接近中性,不会对电池片产生较严重腐蚀。助焊剂的选用原则是,不影响电池性能,不影响EVA性能。晶体硅太阳电池电极性能退化是造成组件性能退化或失效的根本原因之一。助焊剂的助焊效果及可靠性又是影响电极焊接效果的重要因素。因此,太阳电池电极的焊接不能选用一般电子工业用助焊剂,普通有机酸助焊剂会腐蚀未封装的太阳电池片。
铝合金边框:保护玻璃边缘、铝合金结合硅胶打边加强了组件的密封性能、大大提高了组件整体的机械强度。铝型材的表面处理(先喷沙后氧化)太阳组件要保证长达25年的使用寿命,铝合金表面必须经过钝化处理——阳极氧化,表面氧化层厚度大于12μm。用于封装的边框应无变型,表面无划伤。目前组件厂家铝边框的平均氧化层处理厚度在15μm±2μm阳极氧化:接线盒:组件电池的正,负极从TPT引出后需要一个专门的电气盒来实现与负载的连接运行。接线盒的作用是电极引出后一般为四条镀锡条,不方便与负载之间的电气连接,需要将电极焊接在成型的便于使用的电接口上。引出电极时密封性能被破坏,这时需涂硅胶弥补,接线盒同时起到了增加连接强度,美观的作用。通过接线盒内的电导线引出了电源正负极,避免了电极与外界直接接触老化。接线盒的IP等级组件用接线盒IP等级最低要求为IP65。电缆固定头、接线盒外接导线
二极管:防止“热斑效应”,旁路二极管3个,每24个电池片并联一个旁路二极管。
硅胶:主要用来粘接、密封。粘接铝合金和层压好的玻璃组件并起到密封作用,粘接接线盒与TPT,起固定接线盒的作用。
北极星太阳能光伏网讯:中国光伏产业经历了风风雨雨几十年,无论是技术,还是成本都经历了翻天覆地的变化,随着市场对于高效率太阳能电池的需求,多晶硅铸锭工艺也在一丁一点的发生着变化,作为电池片原材料的源头,多晶硅铸锭所扮演的角色也就不言而喻了。
一、多晶硅铸锭的主要流程
二、喷涂工序
1、石英坩埚
检查石英坩埚表面——干净无污染、无裂纹,同时内部划痕、凹坑、突起不能超过一定的范围,核对石英坩埚的尺寸(内外部尺寸、上边厚度、底部厚度等),坩埚底部厚度的异常会引起铸锭热场工艺的变化。
2、坩埚涂层
坩埚底边和侧边需要预先进行人工刷涂,待涂层凝结过后进行喷枪喷涂,涂层的量是一定的(刷图次数不限),刷涂的涂层包括氮化硅粉(底部和边部分别为120g、380g)、硅溶胶(60g、150g)、PVA(50g、120g)和纯水(180g、340g),喷涂的涂层中则不需要PVA。
3、检查涂层
在喷涂坩埚侧壁的过程中需用挡板遮住坩埚底部,约为侧壁3/4的地方。喷涂和刷涂过程中要均匀使液体凝聚,涂层必须满足均匀、无气泡、无脱落、无裂缝等条件方为合格。
4、坩埚焙烧
将喷好的坩埚放入烘箱内,开始坩埚焙烧,整个过程大概需要30~40小时,先快速升温至设定温度,保持几小时后,自然冷却至合适温度,再开盖冷却。
三、多晶硅工序
1、备料
对多晶硅的原硅料和回收料使用PN测试仪和电阻率进行分档分类,直到达到配比质量,最后计算出需要的掺杂剂质量。硅料的种类大致有多晶原硅料、多晶碳头硅料、多晶硅锭回收的硅料、单晶棒或单晶头、尾料、单晶锅底料、单晶碎硅片、其他半导体工业的下脚料等。
2、装料
装料时操作工戴上PVC手套和防护服,轻拿轻放防止氮化硅涂层被破坏。形状不规则的片料或大块硅料在指定区域砸碎,对片料进行破碎,使用专用砸料箱,注意此过程必须戴PVC手套、护目镜,防止危害人体。挑选“硅料表面比较光滑的面”。大小块料要尽量均匀,碎料尽量用来填缝隙。8.在装料过程中,一定不能碰到坩埚内壁,发现破坏要取出硅料,重新喷涂,直至符合要求再用。一半的硅料装完后,领取掺杂剂,用电子天平称重后均匀的放置到硅料的表面。掺杂剂假如完成后,继续加入硅料,直至达到规定数量为止。
3、加热
在真空状态下开始加热、按照一定的工艺程序,对硅料、热场、坩埚等进行排湿、排杂。
4、熔化
熔化与加热的延伸、也可以理解为加热,但在工艺程序上的设计上有较大的差别,熔化是将固体硅转化成液体硅,温度最高可达1560度。操作者在中心观测孔观测是否融化完成,连续观测3-5分钟,若没有硅料固体出现,程序方可继续向后运行。
5、长晶
熔进入长晶阶段,打开隔热笼以冷却DS-BLOCK,坩埚内硅液顺着温度梯度,从底部向顶部定向凝固。操作者在中心观察孔观察是否透顶手动选择合适的步骤。
6、退火
因在长晶阶段硅锭存在温度梯度,内部存在应力。若直接冷却出炉,硅锭存在隐裂,在开方和线切阶段,外力作用会使硅片破裂,退火的作用是使硅锭内部温度一致,消除硅锭内的应力。
7、冷却
太阳电池多晶硅锭是一种柱状晶,晶体生长方向垂直向上,是通过定向凝固(也称可控凝固、约束凝固)过程来实现的,即在结晶过程中,通过控制温度场的变化,形成单方向热流(生长方向与热流方向相反),并要求液固界面处的温度梯度大于0,横向则要求无温度梯度,从而形成定向生长的柱状晶。
四、铸锭车间常见事项
2、当炉内压力低于980mbar时,需要对炉子进行充气。回填操作时炉内压力大于这一数值时没有自动停止,需自动停止。
五、硅锭的检测
如图,典型的电阻率分布呈现出上述的变化趋势,尾高头低。主要是因为所添加的母合金的分凝系数造成的,检测硅锭中的电阻率是否出现异常。
正常情况下的硅锭红外检测结果不会出现下图红色区域标识的,造成此现象的原因可能为热场不稳定或硅料杂质比较多造成的。
北极星太阳能光伏网讯:试问2017年光伏圈什么最火——单多晶之争,无论是上游单晶占比,还是光伏电站建设的选择,单多晶大战都呈现出越来越激烈的态势,不禁让人感叹,本是同根生,相煎何太急啊,不过也正是由于这个原因,想通过单多晶之争来大幅拉低市场价格的机遇党还是不要再等了吧。
一、单晶硅制备原理
1、直拉法
直拉法是目前国内大面积使用较多的单晶硅制备技术,又称切克劳斯基法(Czoalsik:CZ法)是1917年由切克斯基建立的一种晶体生长方法,现成为制备单晶硅的主要方法。利用旋转着的籽晶从坩埚中的熔体中提拉制备出单晶的方法,又称直拉法。目前国内太阳电池单晶硅硅片生产厂家大多采用这种技术。把高纯多晶硅放入高纯石英坩埚,在硅单晶炉内熔化;然后用一根固定在籽晶轴上的籽晶插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便在籽晶下端生长。其基本原理如图所示。多晶硅硅料置于坩埚中经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶硅锭的拉制。炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长及生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转及提升速率,炉内保护气体的种类、流向、流速、压力等。CZ法是将硅料全部熔化后,由一点开始结晶,通常这样的提纯只能进行一次。
2、直拉法的优缺点
设备和工艺比较简单,容易实现自动控制;生产效率高,易于制备大直径单晶;容易控制单晶中杂质浓度,可以制备低阻单晶。
易被坩埚污染,硅单晶纯度降低,拉制的硅单晶电阻率大于50欧姆˙厘米,质量很难控制。
3、区熔法
悬浮区熔法比直拉法出现晚,由W˙G˙Pfann1952年提出,P˙H˙keck等人1953年用来提纯半导体硅。悬浮区熔法是将多晶硅棒用卡具卡住上端,下端对准籽晶,高频电流通过线圈与多晶硅棒耦合,产生涡流,使多晶棒部分熔化,接好籽晶,自下而上使硅棒熔化和进行单晶生长,用此法制得的硅单晶叫区熔单晶。区熔法有水平区熔和悬浮区熔,前者主要用于锗提纯及生长锗单晶,硅单晶的生长则主要采用悬浮区熔法,生长过程中不使用坩埚,熔区悬浮于多晶硅棒和下方生长出的单晶之间,区熔法不使用坩埚,污染少,经区熔提纯后生长的硅单晶纯度较高,含氧量和含碳量低。高阻硅单晶一般用此法生长。目前区熔单晶应用范围比较窄,不及直拉工艺成熟,单晶中一些结构缺陷没有解决。
二、工艺流程
1、直拉法法
CZ法主要设备:CZ生长炉
CZ法生长炉的组成元件可分成四部分
(1)炉体:包括石英坩埚,石墨坩埚,加热及绝热元件,炉壁
(2)晶棒及坩埚拉升旋转机构:包括籽晶夹头,吊线及拉升旋转元件
(3)气氛压力控制:包括气体流量控制,真空系统及压力控制阀
(4)控制系统:包括侦测感应器及电脑控制系统
工艺流程:加料→熔化→缩颈生长→放肩生长→等径生长→尾部生长
(1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。
(2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。
(3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩劲生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。
(4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。
(5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。
2、区熔法
Fz法的基本设备
Fz硅单晶,是在惰性气体保护下,用射频加热制取的,它的基本设备由机械结构、电力供应及辅助设施构成。机械设备包括:晶体旋转及升降机构,高频线圈与晶棒相对移动的机构,硅棒料的夹持机构等。电力供应包括:高频电源及其传送电路,各机械运行的控制电路。高频电源的频率为2~4MHz。辅助设施包括:水冷系统和保护气体供应与控制系统、真空排气系统等。区熔硅单晶的生长
原料的准备:将高质量的多晶硅棒料的表面打磨光滑,然后将一端切磨成锥形,再将打磨好的硅料进行腐蚀清洗,除去加工时的表面污染。
装炉:将腐蚀清洗后的硅棒料安装在射频线圈的上边。将准备好的籽晶装在射频线圈的下边。
关上炉门,用真空泵排除空气后,向炉内充入情性气体,使炉内压力略高于大气压力。
给射频圈送上高频电力加热,使硅棒底端开始熔化,将棒料下降与籽晶熔接。当溶液与籽晶充分熔接后,使射频线圈和棒料快速上升,以拉出一细长的晶颈,消除位错。
晶颈拉完后,慢慢地让单晶直径增大到目标大小,此阶段称为放肩。放肩完成后,便转入等径生长,直到结束。如图所示
纵观国内,虽然已经过了那个只能做高耗能的工业级硅,提纯完全靠进口的年代的时代,但是就目前而言,中国的硅产业依旧没有太多技术上的优势(相对而言),中国光伏行业的大力发展,也促进了硅产业的发展。太阳能发电以目前的技术看,远远没有发挥出硅材料的能力,未来,希望能有更多的人、更多的企业能够致力于技术上的创新,让中国的硅产业走向新的高度,让中国也能够做出世界级的芯片级硅。
科技驱动创新行业智行千里
飞利浦商用显示器:智能科技助力高效工作
破内卷“出海”势在必行数字化为全球业务保驾护航
国药国际CIO冯伟:数字化转型要打破信息化建系统的固有思维