文章详情

催化剂是一种加快化学反应速率,本身质量和化学性质在反应前后不变的物质,能大大降低消除VOCs所需要的反应温度,通常是由载体、活性成分和助剂等组成。常用催化剂有:

(1)整体式催化剂:载体(堇青石陶瓷蜂窝)、活性组分(贵金属Pd、Pt和Rh,过渡金属氧化物)、助催化剂(稀土复合氧化物)。

(2)颗粒催化剂:一般以氧化铝小球为载体,颗粒尺寸:3~5;4~6mm。(贵金属Pd、Pt和Rh,过渡金属氧化物)、助催化剂(稀土复合氧化物)。颗粒催化剂(空隙率26%)总体催化效果不及蜂窝催化剂(空隙率70%)

2、催化剂活性成分

(1)贵金属催化剂一般规律:

贵金属催化剂(0.6g/L)的实验室性能(20000-1),工业装置使用温度:320-350度;空速20000-1。

(2)非贵金属催化剂一般规律:

一般以CuO、MnOx、FeOx等为活性成分,有利于将含氮有机物中的N转化为N2

非贵金属催化剂的实验室性能(20000-1),工业装置使用温度:300-350度;空速15000-20000-1。

(3)几点认识

1)贵金属含量是催化剂的主要成本,决定了催化剂的成本。

2)贵金属含量不是决定催化剂性能的唯一因素。

3)相同贵金属含量的催化剂其催化性能会有本质的差别。

4)相同贵金属含量催化剂的性能由催化剂的制备技术来决定。

5)根据处理对象,对催化剂配方要进行合理的调整

3、催化剂的载体及负载方式

催化剂的活性成分负载在较大比表面积的载体上。催化反应中,载体除了要负载分散活性成分,还能增加催化剂的稳定性、选择性和活性等,对催化效果和寿命也有很大的影响。

(1)催化剂的载体主要有两类,一类是球状或片状,另一是整体式多孔蜂窝状。

(2)催化剂活性成分可通过下列方式沉积在载体上:1)电沉积在缠绕或压制的金属上;2)沉积在颗粒状陶瓷材料上;3)沉积在蜂窝结构的陶瓷材料上。

4、催化剂的制备

整体式催化剂:堇青石蜂窝,金属蜂窝载体

颗粒催化剂:第二载体Al2O3,活性组分Pt、Pd、Rh,助催化剂CeO2等

5、催化性能的综合评估

(1)催化温度,耐热温度(实验室转化率达到99%所需要的低反应温度耐热温度;或催化燃烧的工作温度);

(2)价格;

(3)使用寿命,2年左右;

(4)催化剂中毒。

6、催化剂的用量、填装、温度点

按照空速15000h-1计算,一立方米催化剂处理的有机废气量为15000m3,以此类推。常用催化剂规格:100*100*50;200目;催化剂填装高度:200-300mm。

催化剂填装的三种模式:

7、催化反应床及设备选择

(1)催化反应床

1)保证进入催化床层的有机废气的气体分布和温度分布均匀。

2)催化床中催化剂的填装要紧密、同时要考虑热胀冷缩,以免产生气体短路,导致净化效率的下降。

(2)设备选型的程序:

1)前期工作:风量、VOCs浓度、VOCs成分;

2)中期工作:催化剂对VOCs实验室小试;VOCs浓度过大和过小,应对方案(VOCs浓度的计算:涂料中溶剂挥发量/风量)

3)后期工作:设计方案

[关于催化剂]

1、催化剂使用的常见问题及措施

(1)有机废气的浓度应在爆炸极限的安全范围之内,8000mg/m3。

(2)催化剂在使用前,应用小风量催化剂床预热至300℃以上,方可进入有机废气。为保证催化剂长期使用,催化剂最佳使用温度控制在320-450℃。

(3)应避免通入含有树脂、高沸点聚合物、重金属,及含氟、磷、硫、砷、含氯有机物等使催化剂中毒的物质。

(4)有机废气中氧气含量应大于5%。

2、催化剂中毒

(1)由于反应温度过低导致的催化剂表面积炭——高温再生

(2)涂料挥发过程携带灰分在催化剂表面的沉积——酸洗再生

(3)P、F、Pb等中毒——生成F化物、P化物、含Pb合金

(4)催化剂高温失活——活性组分的团聚,催化剂表面贵金属离子变大;催化剂成分之间的固相反应,活性相消失;载体相变,比表面积收缩。

(5)减少催化剂活性的衰减:按操作规程精准地控制反应条件;对废气进行预处理,防止催化剂中毒;改进催化剂制备工艺,提高催化剂耐热性和抗毒能力。

催化燃烧技术是处理VOCs主要技术之一,其技术核心是催化剂和设备设计,根据处理对象,选择合适的催化剂,提高催化效率。贵金属催化剂的催化活性和选择性好,但资源稀缺,价格昂贵。降低贵金属含量,提高催化剂的性价比,开发高性能的非贵金属催化剂是今后的研究方向。由于实际过程中,VOCs种类及成分等的复杂性,对于催化燃烧技术,如何避免催化剂活性下降是工业应用的关键。

推荐教授

罗孟飞,博士,浙江师范大学教授,先进催化材料教育部重点实验室主任,浙江省二级教授,中国化学会催化学会委员,浙江省固体表面反应化学重点实验室主任,苏州大学博士生导师,浙江省151人才第一层次入选者,省高校中青年学科带头人,校“双龙学者”特聘教授。主要从事多相催化、催化新材料等方面的研究。已在国内外期刊上发表研究论文100余篇,其中SCI收录40余篇,EI收录9篇。曾获3项国家发明专利、浙江省科学技术三等奖、浙江省人民政府科技进步三等奖、浙江省教育厅科技进步二等奖。

THE END
1.铂作为催化剂的原理是什么啊?盖德问答RT, 跟一博后干活,他要我研究非 贵金属催化剂 ,在碱性燃料电池里面用的,我一点基础都没有啊,能否推荐点书给我看?谢谢https://m.guidechem.com/wenda/question/detail80135.html
2.西安凯立新材料股份有限公司西安凯立主要从事贵金属催化剂的研发与生产、催化应用技术的研究开发、废旧贵金属催化剂的回收及再加工等业务。我司为我国精细化工领域技术领先的贵金属催化剂供应商,开发的多种贵金属催化剂产品实现了进口替代。http://www.xakaili.com/
3.齐翔腾达:002408齐翔腾达投资者关系管理信息4、公司下一步的发展规划是什么?回复:按照山能集团确定的“134”发展构想,齐翔腾达形成了“存量优化、增量跨越”的新一轮发展思路,公司瞄准低碳化、高端化、园区化方向,在原有产业链的基础上继续延链、补链、强链,深耕碳三碳四下游新材料领域,形成新一轮高质量发展路线图。5、目前公司贵金属催化剂的主要产品http://gubaf10.eastmoney.com/news,002408,1405080093,d.html
4.关于贵金属在生产销售过程中的会计核算探讨公司持有垫料贵金属的目的是为了生产加工催化剂产品且非进行交易性投资,因此属于存货,而不属于金融资产,应当列报于存货项目下的“周转材料”中并按照成本与可变现净值孰低计量。 3、在销售给下游客户催化剂产品的同时,采购客户已使用的废旧贵金属催化剂,该类业务与加工业务有什么区别?是否应当采用净额法确认收入?https://www.shinewing.com/audit/practising/detail/64b8c313f678ac623dbc0275.html
5.稀土Ce基复合氧化物负载贵金属Pt催化剂的合成及其选择加氢性能由于CeO_2具有独特的氧化还原性能,强大的氧离子储存能力(OSC),以及Ce~(3+)和Ce~(4+)之间快速的转化能力,因此在多相催化中应用极其广泛。研究发现CeO_2和其他金属复合后,能明显提高材料的氧化还原性能和稳定性。本论文针对有重要催化应用背景的CeO_2催化剂,成功制备了Ce-La以及Ce-Al复合氧化物负载Pt纳米粒子两种https://wap.cnki.net/touch/web/Dissertation/Article/1021724730.nh.html
6.《贵金属废催化剂利用处置技术规范》.docx《贵金属废催化剂利用处置技术规范》(意见征集稿)编制说明《贵金属废催化剂利用处置技术规范》编制组二〇二二年九月 目录一、工作简况 一、工作简况1.任务来源中华人民共和国科学技术部2018年在“十三五”国家重点研发计划“固废资源化”专项“危险废物环境风险评估与分类管控技术”项目(项目编号为2018YFC1902800)中设立https://www.renrendoc.com/paper/268837482.html
7.酸性环境下析氧反应Ir,Ru贵金属电催化剂的研究进展1000-0518. 230129 酸性环境下析氧反应 Ir,Ru 贵金属电催化剂的研究进展 钱音男 石钏张卫 罗兆艳* (深圳大学化学与环境工程学院,深圳 518000) 摘要 水电解法是利用可再生能源生产氢气的最有效,最环保的方法之一.质子交换膜(PEM)水电解槽对 可再生能源的储存和转化具有重要意义,与碱性电解水相比,具有设计紧凑,http://yyhx.ciac.jl.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18175
8.非贵金属基催化剂用于催化降解有机污染物的研究进展当前,随着环境问题的日益加剧,工业废水产生了大量有毒的有机化合物,将这些物质释放到水生环境中会对人类健康造成极大的威胁,因此,对有机污染物的合理处理变得尤为重要,制备具有高催化效率、高循环稳定性、低成本和绿色环保的非贵金属催化剂可以促进绿色可持续发展。阐述了非贵金属基催化剂的研究进展,包括最常用的单/https://snm.usst.edu.cn/html/2022/2/20220201.htm
9.铂金催化剂铂金催化剂是用途广泛的贵金属催化剂之一,贵金属的资源稀缺性决定了其价格昂贵,但其独特的物化性能又决定了在多种催化反应中不可替代。铂金催化剂主要是以氯铂酸贵金属为主要原材料的铂金催化剂,采用金属网、铂黑或把铂载于氧化铝等载体上。 铂金催化剂催化效率高,可以抑制Si-Vi和Si-H反应过程中伴随发生的副反应https://www.chemicalbook.com/ProductChemicalPropertiesCB59337883.htm