基于大曲各成分理化指标与产酒量和酒质联系的测定方法与流程

本发明属于自动控制技术领域,尤其涉及一种基于大曲各成分理化指标与产酒量和酒质联系的测定方法。

背景技术:

综上所述,现有技术存在的问题是:目前测定大曲脂肪酸的检测方法存在没有合适的微生物传感器来检测大曲脂肪酸;大曲酒酒体中的呈香呈味物质含量仅占酒体总量的2%左右,所形成酒品的价值就远远超越食用酒精的价值;曲药的各理化指标由于生产季节、生产环境、工艺参数、取样方法和部位等因素差异,导致同一指标分析结果差异较大。具体如下:

(1)到目前为止,还没有测定大曲脂肪酸更好的检测方法。存在的主要问题是:原料中脂肪降解产物脂肪酸以及曲坯中的色素、固醇等均共同显示为粗脂肪含量,我们拟用脂肪酸含量的高低表征脂肪转化力。脂肪转化力虽是体现大曲复合曲香物质的重要指标之一,但到目前为止,由于没有合适的微生物传感器来检测大曲脂肪酸,大曲脂肪酸的测定方法将成为今后共同探讨的方向。(2)大曲中纷繁复杂的微生物区系和酶系,进入大曲酒发酵体系中又进一步彼消此长地繁殖代谢和生化演化,形成种类繁多的酒体呈香呈味物质,目前还未完全确定其种类(3)大曲酒酒体中的呈香呈味物质含量仅占酒体总量的2%左右,但所形成酒品的价值就远远超越食用酒精的价值。(4)制曲工艺有一定差异(5)曲药的各理化指标由于生产季节、生产环境、工艺参数、取样方法和部位等因素差异,导致同一指标分析结果差异较大。

技术实现要素:

针对现有技术存在的问题,本发明提供了一种基于大曲各成分理化指标与产酒量和酒质联系的测定方法。

本发明是这样实现的,一种基于大曲各成分理化指标与产酒量和酒质联系的测定方法,所述大曲各成分理化指标与产酒量和酒质联系的测定方法曲料成份采集分析系统和微生物快速检测系统;

曲料成份采集分析系统通过传感器模块能够实时检测曲料成份的变化和微生物群落的生长,根据其理化指标与数据库中的不同厂家的理化指标对比,寻求最佳制曲工艺,并可更新数据库;根据其理化指标将其控制参数应用于曲料发酵自动控制系统,初步实现制曲工业化;

所述微生物快速检测系统是通过低选择性交互敏感的多传感器阵列检测曲料样品的整体特征响应信号,检测培养基随着微生物生长的变化,通过检测取得特征值,再通过pca和神经网络等模式识别方法的数据处理来确定不同阶段培养基的不同特征。

进一步,所述曲料成份采集分析系统包括:

传感器阵列,由六个工作电极和一个辅助电极组成一个独立的单元机构并和一个参比电极(铂)共同组成一个完整的传感器阵列,通过检测大曲中的主要成分的理化指标来分析大曲的品质;

信号激励采集单元,由信号激励单元,信号采集单元和信号调理单元构成。测试平台为样品安置、检测提供严格的工作环境;信号激励单元和调理单元和数据分析模块通过串口协议实现通信,传感器上的信号经过调理电路由数据采集卡再次通过调理电路输出最终的传感器信号,并通过串口或usb传送至电脑pc,采用labview实现上位机的通信和分析软件;

应用软件单元,是在电脑上运行的用于控制智舌检测、分析数据、数据结果的应用程序;

数据分析模块,运用主成分析法模式识别和神经网络算法进行数据的分析处理。

进一步,所述理化指标智能分析方法是粗糙集理论结合神经网络、主成分分析法包括:

(1)模式识别,以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为工具,对各种媒体信息进行处理、分类、理解;

(2)特征值提取,分别利用1hz、10hz、100hz三种脉冲脉冲频率作为激励信号扫描,以100μs作为采样频率,则在1hz、10hz、100hz的三个频段内的采集点的个数分别为200000、20000、2000个,对数据进行特征选择和特征提取;

(3)主成分分析,把原来多个变量划分为少数几个综合指标;

(4)dfa判别函数分析,根据已知观测对象的分类和若干表明观测对象特征的变量值,建立判别函数和判别准则和判别函数,并使其错判率最小;

(5)人工神经网络,利用输出后的误差来估计输出层的直接前导层的误差,然后利用此误差去估计更前一层的误差,如此反复训练一层层的反传,得到其他各层的误差估计。

所述主成分分析法进一步包括:

首先标准化处理,原始数据构成的矩阵为x,它是由行n行p列构成;

标准化处理:

经过主成分分析法的处理分解问特征值与载荷矩阵的相积,计算其相应的特征值和特征向量,得到即x=tl';根据t的得分矩阵做出图形来判断样品的归类效果图。

所述dfa判别函数分析进一步包括:

采用的判别准则主要是线性判别分析,取线性判别函数:

u(x)=atx=a1x1+a2x2+…+apxp;

各总体内离差平方和:

其中

不同总体间离差平方和:

为满足式中各总体内离差平方和最小而式中各总体间离差平方和最大,则需要使最大;判别法则为:若则判x∈ξi;选择方法是使达到某一数值,取这数值在0.75~0.95。

所述人工神经网络进一步包括:

学习因子,根据输出误差大小利用变步长法自动调整学习因子,h=h+a·(ep(n)-ep(n-1))/ep(n),其中a为调整步长,取值在0~1;h为步长因子;

隐层节点数,当某节点出发指向下一层节点的所有权值和阈值均落在死区中时,死区的范围取±0.1、±0.5区间,则把该节点删除;

l=(m+n)1/2+c;

其中m为输入节点数,n为输出节点数,c为1~10之间的常数;

算法优化,采用lm-bp神经网络算法:

其中能量方程为:

最后解得:δxk=[jt(xk)j(xk)+μi]-1jt(xk)e(xk);

当μ=0时,为牛顿法,而当μ接近于8时,则是steepestdecent法。

本发明的优点及积极效果为:利用多频脉冲法对传感器阵列信号的数值进行有效提取,大大减少了冗余信息,对后面分类定性和定量起指导作用。利用电子舌伏安法,运用采集方法是传感器阵列的电化学信号的采集。采集的电位范围-1v~+1v,以0.2v脉冲幅度递减,频率段是1,10,100hz这样的几个频段,采集频率位100微秒一个点,这样的采样频率在这三个段就可以采集222000个点,传感器阵列一般是由5,6个传感器组成,就会有很大数量的采集数据,大量的采集数据,虽然是有丰富的信息量,但是同是有可能会对计算机造成负荷,也会造成冗余。

本发明多频率脉冲法提取的特征点是顶点和拐点,顶点是与脉冲电流信号和溶液带电离子性质的特征有关联;而拐点则是脉冲电流信号和溶液中氧化还原组分性质相似,如图4所示。这样电位的变化范围—1v~+1v,以0.2v的幅度递减,图4中的片段只需要取40个特征值,对比222000,数据量就少了很多,这样就加快了数据的处理速度。

本发明利用改进的主成分分析法和粗神经网络方法对大曲的重要属性进行分析,从而能够得出决定大曲质量的理化指标;利用特异性传感器和人工智能的方法对微生物进行定性定量检测;采用开放式数据库,能够快速的查询、建立、分析不同厂家和企业的大曲质量。本发明能够对生产曲料的过程中对大曲品质进行实时检测,可以提高生产效率,也对品牌效益起到了保护作用;该技术的应用前景长远,对社会起到了推动的作用。微生物快速检测系统可应用于食品安全检测领域,对食源性细菌的检测可满足快速,简便,经济,可靠等要求,同时也对食品品牌保护和社会安全起保障作用。

附图说明

图1是本发明实施例提供的曲料品质分析与评价系统框图;

图2是本发明实施例提供的bp和神经网络相结合的培养基优化算法;

图3是本发明实施例提供的微生物快速检测系统。

图4是本发明实施例提供的多频率脉冲法提取的特征点是顶点和拐点示意图。

具体实施方式

为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。

下面结合附图1附图2附图3对本发明的原理作详细的描述。

如图1所示曲料成份采集分析系统分为硬件和软件两部分系统。

硬件系统由传感器阵列模块、信号调理系统、数据预处理模块和数据分析模块。各组成部分功能如下:

(1)传感器阵列模块:传感器采用贵金属裸电极阵列,并采用多频脉冲作为激发信号。通过采集工作电机上的响应信号,利用多频脉冲原理提取有效信号特征值,结合模式识别方法对数据最后分析。

(2)信号调理系统:为了能够从中提取到传感器输出信号——激发电流,必须采用电流电压放大电路,使其信号的强度和幅值的大小能够在信号采集电路信号采集的范围之内。其次,电化学装置的电极系统本身的内阻非常大,所以系统的输入级需满足的基本条件是具有高的输入阻抗和低的输入电流。输入级放大信号后为了保持原有信号的信息需要通过的一定的电路进行滤波,使其噪声降到最小。每个工作极上设置单独的模拟开关,从而控制每个工作极上信号电放大和滤波处理。

(3)数据预处理模块和数据分析模块:多通道高精度数据采集器,将调理好的模拟信号转换为数字信号输入到计算机,系统软件会将庞大的数据通过进行分析、存储,并且可以完成数据库更新。

(4)系统为了增加可调式部分,预留多个接口(usb)。使电路模块实现灵活拔插或扩展,增加系统的扩展性。

所述曲料成份采集分析系统包括:

软件系统需具备大曲监测成分实时显示、参数设置和调度的实时控制管理、综合信息管理、人工智能识别等功能。按照其功能主要包括数据库、模型方法库、知识库、在线数据采集子系统、实时控制管理、综合分析与决策支持子系统、综合信息管理子系统。

其中数据库是整个系统运转的基础,准确高效地收集和及时处理大量复杂的监测数据资料是整个系统设计和开发的重点。数据库及综合信息管理子系统是面向数据信息存储和信息查询的计算机软件系统。本系统的数据库内容包括:监测仪器特征库;原始监测数据库;整编监测数据库;在线数据实时分析库;人工巡视检查资料库;数据自动采集参数库;模型输入输出数据库;实时控制日志数据库等。

(1)模型库及其管理子系统

提供相应分析处理使用的处理模型和计算方法的例程库。包括各种时态和空间模型、在线数据可靠性分析算法等。包括大曲成分预报模型、大曲质量评价模型、大曲质量预测模型、酒质评价模型、酒质预测模型等。

(2)知识库及其管理子系统

是用于知识信息的存储及其使用管理的计算机软件系统。本系统的知识库内容包括:1.各监测工程的监测指标,2.各厂家企业的评判标准,3.监测数据误差限值,4.专业规律指标,5.专家知识经验,6白酒法律、法规,行业规程、规范的有关条款等。

如图3所示是本发明实施例提供的微生物快速检测系统。

通过低选择性交互敏感的多传感器阵列检测曲料样品的整体特征响应信号,检测培养基随着微生物生长的变化(把大的有机物分子转化成小的有机分子和离子),过程中培养基其本身的特性(电导、电阻、粘度等等)也发生了改变,通过对这一变化的检测取得特征值,再通过pca和神经网络等模式识别方法的数据处理来确定不同阶段培养基的不同特征。

(1)传感器阵列的确定

采用电化学的方法对微生物及其代谢产物检测,传感器是检测系统的核心部件。关键往往在于如何提高检测的灵敏度,以及从电信号中提取出和待测微生物指标呈良好线性关系的特征,通过氧化还原酶反应和适当的媒介,能将微生物的代谢氧化还原反应转换成可量化的电信号。

传感器阵列采用重金属铂,金,钯,钨,钛,银的电极构成,并利用相同的处理方法(主成分分析法或最小二乘法)来选取对微生物培养基检测的最佳电极和频率段。

(2)微生物检测池的设计

由于微生物的生长会产生很多气泡,导致检测的误差加大,所以不能采取传统将电极倒置插入培养基检测的方法。微生物检测池是一个密闭的空间,池体底部装有电极的设置可以避免外界对被检测培养基的污染,使检测的数据更加准确,传感器阵列位于检测池的底座还可以消除微生物在生长的时候产生的气泡对电极的影响,检测池池体内侧设有内螺纹,底座外周设有与该内螺纹相匹配的外螺纹,设置螺旋结构,可以使检测池池体与底座脱离,便于清洗电极表面。

(3)培养基优化设计

神经网络有很强的输入输出非线性映射能力,特别适用于微生物发酵这种高度非线性、非结构化的复杂模型中。而遗传算法又是一种有导向的全局随机搜索方法,它对于目标函数和搜索空间没有任何限制,因此非常适合神经网络模型等无明确分析函数形式的优化问题。实验培养基配比的组合被分成训练组和预测组,训练组用来训练bp神经网络,然后预测组用来对训练好的网络进行测试,由此构建神经网络模型。并以该模型的输出为ga的目标函数,通过遗传算法的全局寻优,找到最优培养基组合。

(4)定量检测微生物方法的建立

本发明的理化指标智能分析方法是粗糙集理论结合神经网络、主成分分析法,具体包括以下步骤:

1.1模式识别

模式识别是以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。本发明的电子舌系统的数据分析模块主要用到pca、dfa等模式识别算法。

1.2特征值提取

多频脉冲电子舌采用的是多频脉冲伏安法采集传感器阵列的电化学信号。在系统的操作中,对于传感器电压中的起始电压、结束电压以及步降电压一般分别设置为正向最大电位1.0v、负向最大电位-1v、0.2v。按照多脉冲测试方法中,分别利用1hz、10hz、100hz三种脉冲脉冲频率作为激励信号扫描,以100μs(最大极限值是10-6s)作为采样频率,则在1hz、10hz、100hz的三个频段内的采集点的个数分别为200000、20000、2000个。则所在的传感器阵列的一次采样中就可以获取点的个数达到m级,同时还存在了大量的冗余信息,这对常规的数据分析(采取直接分析的方法)带了不便,同时也给计算机带来了超负荷的运算。所以在进行数据分析之前需要采取一定的算法对大量丰富的数据进行特征选择和特征提取。

1.3主成分分析法

1.3.1主成分分析法数学模型

假设具有n个样本,每个样本具有p个变量,构成一个n×p阶的矩阵:

σ=(σij)p×p=e[(x-e(x))(x-e(x))t];

新建模型满足f=ax:

则σ必为半正定矩阵,用雅克比方法|λi-a|=0求特征值λi(按从大到小排序)及其特征向量:

由于需要满足||ai||=1,即其中aij表示向量ai的第j个分量。可以证明,λi所对应的正交化特征向量,即为第i个主成分fi所对应的系数向量ai。在选择重要的主成分时,主成分的方差是递减的,代表所含有样本信息量也是递减的,但并没有选择所有的主成分,而是按照其累计贡献率(指某个主成分的方差占全部方差的比重)的大小选取k个主成分来作为抽取样品。

其中贡献率为:贡献率越大代表所含有的信息量越大。

累计贡献率:一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。

在这里可以理解主成分是原来变量的一种线性组合,结合其系数的定性分析可知,系数的大小因有正负大小相当之分。所以不能理所当然的认为主成分是某个变量的属性作用。根据线性组合中系数绝对值的大小可以给主成分赋予实际意义,比如变量系数大小相当的情况下,则构成的主成分就是几个变量的总和。根据标准化的原始数据可以得到各主成分的得分矩阵为式为:

1.3.2pca在本发明中的应用

在特征值的提取中,三个频段(1hz、10hz、100hz)内经过预处理后的数据有40×3=120个,虽然脉冲法提取后大大减少了特征值的个数,但是直接对120个数据进行样本处理还是有相当大的难度,而且数据里面仍有大量的冗余信息。采用pca主成分分析法,用少数几个主成分值来代替这些特征值。按照主成分分析的计算步骤,首先标准化处理,假设原始数据构成的矩阵为x,它是由行n行p列构成。

经过主成分分析法的处理可以将其分解问特征值与载荷矩阵的相积。计算其相应的特征值和特征向量,最后得到即x=tl'。根据t的得分矩阵做出图形来判断样品的归类效果图。

1.4dfa判别函数分析

判别分析适用于判断个体所属类别的一种统计方法。根据已知观测对象的分类和若干表明观测对象特征的变量值,建立判别函数和判别准则和判别函数,并使其错判率最小,对于一个未知分类的样本,将所测指标代入判别方程,从而判断它来自哪个总体。这种判别准则在某种意义上是最优的,但是局限于判概率最小或是损失最小的情况下。如果样本的总体均值差异很大,则不是最优选择。

判别分析与聚类分析的区别是,聚类分析预先不知道分类,需要对样品进行分类,是一种纯统计技术。而判别分析是在研究对象分类已知的情况下,根据样本数据推导出一个或一组判别函数,同时制定一种判别准则,用于确定待判样品的所属类别,使判错率最小。

1.4.1判别函数分析分类

从数学模型的角度来看,可以将判别问题描述为:对于n个样品,每个样品有p个指标,已知每个样品属于某一k类别(总体)g1,g2,...,gk,对于每一个类别其分布函数分别为f1(y),f2(y),...,fk(y)。给定一个样品y,需要判断来自于哪个总体。寻求一种最佳的判别方法或函数和建立一种最佳的判别准则的过程就是判别分析解决的主要问题。

判别分析的研究方法很多,根据研究对象的不同把判别分析方法分成不同的种类。目前主要有:

根据判别的组数不同划分,主要有两组判别分析和多组判别分析。

根据用不同的数学模型区分不同的总体划分,主要有线性判别分析和非线性判别分析。

根据判别对变量处理方法的不同有序判别分析和逐步判别分析。

根据判别准则的不同,目前主要成熟的有费歇尔判别(fisher)判别准则、贝叶斯判别准则、马氏距离最小准则、最小平方准则和最大似然准则。

1.4.2线性判别分析(lda)

在本发明采用的判别准则主要是线性判别分析,lineardiscriminantanalysis,lda是由ronaldfisher于1936年首次提出并由belhumeur于1996年引入了人工智能和模式识别领域,线性判别分析是模式识别中的经典算法,是一种快速学习算法(supervisedlearning)。

lda的工作原理从数学建模的角度看,就是利用投影的方法把带有标签的数据点从高维的空间投影到低维空间。要求投影后的点具有最佳矢量空间,即按簇类进行类别区分,使得相同类别的点在投影后具有最小距离,而类别不同型的点在投影后具有最大类间距离。使其投影后具有最佳分离性。即投影后的数据点类间散布矩阵最大而类内散布矩阵最小,是一种非常好的特征抽取方法。

线性判别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果。投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在空间中有最佳的可分离性。与距离判别法不同的是,lda判别法对变量的类型及其概率分布形式不需要明确的限定,对数据点构成的空间不进行直接划分,而是寻求一种最佳的投影方式将其从高维空间影射到低维空间进行分类,因此如何选择恰当的投影方式是fisher判别方法的关键所在。

取线性判别函数:

为满足式中各总体内离差平方和(ssr)最小而式中各总体间离差平方和(sse)最大,则需要使最大。判别法则为:若则判x∈ξi。选择方法是使达到某一数值,一般取这数值在0.75~0.95之间。

1.4.3pca和dfa应用区别

两者都是通过降低维数进行特征提取,但是两者的处理过程不同。当类中的样本数据分布具有某一共同特征(如都服从高斯分布),则此时的lda优于pca。当都不服从时,则此时运用pca就是比较好的选择。两者各自有不同的长处和缺点,在处理具体问题时,需要选择相应的方法或是两者结合的方法是很好的。在设计中,增加了这样的算法组合供操作员选择。

1.5人工神经网络

人工神经网络(artificicalneuralnetworks,ann)是一种模仿生物神经网络的结构和功能的数学模型或计算模型。它主要是由大量的神经元节点相互连接构成,并且能根据外部环境的变化改变内部自身的结构,它经常被用来对输入输出间的关系建模来探索数据的模式,是一种自适应系统。因具有分布式信息存储、良好的自组织学习能力和大规模并行处理等特点而被广泛应用在模式识别和智能控制等多个领域。

bp(backpropagation)神经网络最早是由rumelhart和mccelland课题研究小组于1985年提出来的,误差反向后传bp学习算法是一种有监督的神经网络算法。bp网络是一种按误差逆向传播算法,它无需知道描述大量数据输入/输出信息的映射关系的数学方程,就可以自我学习和存储这些数据。

bp算法的基本原理是利用输出后的误差来估计输出层的直接前导层的误差,然后利用此误差去估计更前一层的误差,如此反复训练一层层的反传,就可以得到其他各层的误差估计。

传统bp算法的步骤总结为:

选定学习的数据,p=1,…,p,随机确定初始权矩阵w(0)

用学习数据计算网络输出

反下式向修正,直到用完所有学习数据。

学习因子优化

根据输出误差大小利用变步长法自动调整学习因子,减少迭代次数和加快收敛速度。h=h+a·(ep(n)-ep(n-1))/ep(n),其中a为调整步长,取值在0~1之间。h为步长因子。

隐层节点数优化

其中m为输入节点数,n为输出节点数,c为1~10之间的常数。

输入输出神经元的确定

算法优化

采用lm-bp(levenbergmarquardtbackpropagation)神经网络算法,该算法在求解函数的最小应用方面能够加快收敛速度,其采用的方法与牛顿法类似。

其中能量方程为:▽e2(x)=jt(x)j(x)+s(x);

综合以上所述,相比现有技术,本发明具有以下优势:

(1)利用多频脉冲法对传感器阵列信号的数值进行有效提取,大大减少了冗余信息,对后面分类定性和定量起指导作用。

(2)有效的数学分析法方法,利用改进的主成分分析法和粗神经网络方法对大曲的重要属性进行分析。从而能够得出决定大曲质量的理化指标。

(3)利用特异性传感器和人工智能的方法对微生物进行定性定量检测。

(4)采用开放式数据库,能够快速的查询、建立、分析不同厂家和企业的大曲质量。

以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

THE END
1.贵金属有哪些?详解我国贵金属种类与经济价值在我国,贵金属因其独特的化学性质、经济价值和广泛的应用领域而备受关注。贵金属主要包括金、银、铂以及铂族金属(如钌、铑、钯、锇、铱等)。一、黄金(Au)a.基本属性:黄金是一种化学元素,化学符号为Au,原子序数为79。黄金在自然界中主要以单质形式存在,具有高密度、高延展性、高导电性和良好的抗腐蚀性。https://baijiahao.baidu.com/s?id=1817424897581957110&wfr=spider&for=pc
2.汽车贴膜哪种比较好掌握方法轻松辨真假3、贵金属膜 名如其义,这种膜也是在无色原膜层上喷溅金属,但不同的是喷溅的都是铬、钛、铂等贵重金属。另外,这种膜的喷溅方式为“磁控溅射”,是一种3、问指标。所谓防爆膜,必须具有隔热、防爆、防紫外线等功效。所以,消费者在选择时,可以详细地向销售人员咨询相关情况,从而判别质量的真假和好坏。 https://www.pcauto.com.cn/cxxj/2684/26845968.html
3.原创权威解析珠宝鉴定证书上的秘密,看过了包你买不了上当珠宝鉴定证书是对贵金属、宝玉石或珠宝成品的真假和属性出具的公信证明,由符合鉴定资格的专业机构及持有上岗资质专业人士出具。 二、珠宝鉴定证书常见种类 珠宝鉴定证书的种类,通常是按照现市面上流通的珠宝玉石饰品种类来划分,如: 1.钻石及钻饰品 钻石裸石及钻石的首饰成品出具的证书。内容上不同于其他常见证书的是https://zhuanlan.zhihu.com/p/27811790?ivk_sa=1024320u
4.茶水晶真假鉴别方法介绍一般真假鉴别网友支招相似鉴别图文真假鉴别分类 翡翠知识:翡翠玉怎么鉴别真假|翡翠鉴定真假|如何鉴别真假翡翠| 贵金属知识:银饰分类&真假辨别|银饰品如何鉴别真假|铂金鉴别方法推荐|铂金怎么鉴别真假|如何鉴别白金的质量| 和田玉:和田玉的鉴定真假标准评定|和田玉籽料真假鉴定方法|和田玉识别方法|和田玉籽料真假鉴别|和田玉手链真假鉴别| http://news.zocai.com/czbzs/201310280050.html
5.金相国家标准代号5篇(全文)【328】彩色试样图像平均晶粒度测定方法2 2、非金属夹杂物显微评定 【002】非金属夹杂物显微评定…GB 10561-89 【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T 10561-2005/ISO 4967:1998 3、贵金属氧化亚铜金相检验 【003】贵金属氧化亚铜金相检验…GB 3490-83 https://www.99xueshu.com/w/fileflipkt1p.html
6.k235钢材百科k235钢材知识大全一、 查看印记 国家标准规则,贵金属饰品都应打有产地、供应商、材料和含量印记,无印记产品为不合格产品。如呈现质量问题质检组织可依据印记给予检测判别。每一种类的宝石中,都会有较为稀有的宝贵宝石。关于广阔顾客,则依据自己的喜爱,购买才能选购即可。 跟着钻石的遍及,人们对钻石的关怀,已不局限于真假辨别,https://www.smm.cn/mkds/54825_baike
7.如何判别第三套人民币小全套价值与真假第三套人民币学堂无论是收藏哪套人民币,真假判断都是非常重要的,尤其是第三套人民币,因为离我们生活的年代有些远了,因此了解的人并不多,在收藏的时候要注意假冒或以次冲好的问题,那么收藏者在购买时如何判别第三套人民币小全套价值与真假呢?据小编在市面中了解,简单总结如下几个方面: http://m.bjzxcp.com/article-37440.html
8.科学网—经典生物医学工程中的物理化学在实际应用中,贵金属纳米粒子的尺寸、形貌及结构对其光学、催化等物理化学性质具有极大影响。本书第十二章首先介绍了贵金属纳米粒子的表面等离子共振性质,随后从粒子的成核与生长、粒子形貌的热力学调控与动力学调控等方面,详细论述了尺寸及形貌可控的贵金属纳米粒子的合成方法与相关机理。https://blog.sciencenet.cn/blog-528739-1179378.html
9.《光谱学与光谱分析》2017年,第37卷,第04期相对于传统贵金属材料表面等离激元共振传感器而言,铝表面等离激元共振传感器具有价格低廉、共振光谱带宽小等优点,已逐渐成为了该领域的研究热点。针对铝材料存在与生物分子兼容性差、易氧化等缺点,利用石墨烯化学稳定性好、比表面积大、抗氧化能力强、生物兼容性好等独特优势,将其作为与被测分子直接接触的传感层,提出http://www.sinospectroscopy.org.cn/readnews.php?nid=54873
10.银镶嵌翡翠怎么样鉴别真假银镶嵌翡翠怎么样鉴别真假图片民国时期的老翡翠具有特别的韵味和收藏价值,于是在珠宝行业中备受追捧。由于市场上存在大量的仿制品和冒牌货,鉴别民国老翡翠的真伪成为了一项关键任务。下面将介绍若干鉴别民国老翡翠的方法,帮助珠宝行业从业者更好地判别真伪。 鉴别民国老翡翠的必不可少指标是外观品质。真正的老翡翠一般呈现出一种温润的色泽,色彩鲜艳http://www.0411hd.com/2024baiqi/fcyushi/694450.html
11.黄金怎么辨别真假黄金怎么辨别真假 鉴别黄金需要有一定的经验。这里只简单地介绍一些鉴别方法。 (1)看颜色:黄金首饰纯度越高,色泽越深。在没有对金牌的情况下可按下列色泽确定大体成色(以青金为准则。所谓青金是黄金内只含白银成分);深赤黄色成色在95%以上,浅赤黄色90--95%,淡黄色为80--85%,青黄色65—70%,色青带白光只有https://blog.csdn.net/zhongguomao/article/details/51865559
12.2021年现金反假货币(判断题)*9. 假币收缴凭证按收缴的币种,分为本币假币收缴凭证和外币收缴凭证两个种类。 对 错 *10. 持币人在办理假币收缴业务时,如果对货币真伪有异议,就不能在假币收缴凭证上签字。 对 错 *11. 假币持有人在假币收缴凭证上签字认可后,就不能再申请货币真伪鉴定。 对 错 *12. 少数民族地区可根据情况使用民族文https://www.wjx.cn/vj/tToxUAG.aspx
13.贵金属首饰钻石宝玉石检验员国家职业标准贵金属首饰、钻石、宝玉石检验员。 1.2 职业定义 用抽样或全数检查方式对贵金属饰品的质量,钻石、珠宝玉石的真伪,加工质量,品质分级及镶嵌工艺进行检验及评估的人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高http://www.cnsdjxw.com/news_brows.asp?id=2972