点光源在某方向上单位立体角内的光通量,记作Iv,即Iv=dΦv/dΩ。发光强度的SI单位为坎德拉,是光度学中的基本单位,1979年第十六届国际大会通过的坎德拉的定义为:坎德拉是发出频率为540×10^12赫兹的单色辐射源在给定方向上的发光强度,该方向上的辐射强度为1/683瓦/球面度。
生物发光(bioluminescence)是指生物体发光或生物体提取物在实验室中发光的现象。它不依赖于有机体对光的吸收,而是一种特殊类型的化学发光,化学能转变为光能的效率几乎为100%。也是氧化发光的一种。生物发光的一般机制是:由细胞合成的化学物质,在一种特殊酶的作用下,使化学能转化为光能。
化学发光荧光成像系统是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2017年6月27日启用。技术指标1.检测模式:荧光成像、数字化和化学发光成像;2.激光波长:LD488、SHG532、LD635;3.成像面积:40×46cm;4.像素:10、25、50、100、20
光致发光是指物体依赖外界光源进行照射,从而获得能量,产生激发导致发光的现象,它大致经过吸收、能量传递及光发射三个主要阶段,光的吸收及发射都发生于能级之间的跃迁,都经过激发态。而能量传递则是由于激发态的运动。紫外辐射、可见光及红外辐射均可引起光致发光。如磷光与荧光。光致发光(Photolumi
阴极发光是指晶体物质在高能电子的照射下,发射出可见光、红外或紫外光的现像。例如半导体和一些氧化物、矿物等,在电子束照射下均能发出不同颜色的光,用电子探针的同轴光学显微镜可以直接进行观察可见光,还可以用分光光度计进行分光和检测其强度来进行元素分析。阴极发光现象和发光能力、波长等均与材
生物发光(bioluminescence、BL)是指生物体发出的光辐射,是生物体释放能量的一种形式,这种发光现象广泛地分散在生物界中。它不依赖于有机体对光的吸收,而是一种特殊类型的化学发光,也是氧化发光的一种。生物发光的一般机制是:由细胞合成的化学物质,在一种特殊酶的作用下,使化学能转化为光能。自然
化学发光免疫分析包含两个部分,即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化,形成一个激发态的中间体,当这种激发态中间体回到稳定的基态时,同时发射出光子(hM),利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中
导语从市场份额上看,罗氏、雅培等IVD巨头由于技术优势和先发优势占据了我国大部分化学发光市场,仅前四大巨头就占据了80%以上的市场,而国产厂商只占整个化学发光市场的10%出头。我国化学发光技术起步较晚,早期以板式为主,市场占有率前三的国产品牌分别是安图、科美和新波。▌免疫技术发展迅速,成长为份额最大
化学发光免疫测定(CLIA)是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术。(一)原理化学发光免疫测定(CLIA)属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂
一、化学发光免疫分析技术概述化学发光免疫分析(chemiluminescenceimmunoassay,CLIA)兴起于上世纪70年代中期,发展至今已经成为一种成熟先进的超微量活性物质检测技术,应用范围十分广泛。该技术近10年发展迅猛,是目前推广应用最快的免疫分析方法,也是目前最先进的标记免疫测定技
最近,中国科学技术大学单分子科学团队教授董振超研究小组利用纳腔等离激元增强的亚纳米空间分辨的电致发光技术,在国际上首次实现在单分子水平上对分子间偶极耦合的直接成像观察,从实空间上展示了分子间能量转移的相干特征。该研究成果发表在3月31日的《自然》上。课题组的张杨、骆阳、张尧为论文的共同第一作者。
硅是半导体行业最常见的材料,基于硅材料的电子芯片被广泛应用于日常生活的各种设备中,从智能手机、电脑到汽车、飞机、卫星等。随着技术的发展,研究者发现通过传统的电气互联来进行芯片与系统之间的通信已经难以满足电子器件之间更快的通信速度以及更复杂系统的要求。为解决这一问题,“光”被认为是一种非常有潜力的
是要做电化学测试吧。最简单方法是查阅文献,直接选择文献中的电压窗口。a)先把电压窗口设大一点,扫个CV,看看峰都处在哪里。进而逐步缩小电压窗口,直至达到自己分析测试目的。b)如果是要来个EIS,电压一般不设置,即默认为开路OC。
美国食品与药物监督管理局(FDA)日前批准全球首个鸟苷酸环化酶激动剂类药物利那洛肽(Linaclotide)在美国上市,用于临床治疗便秘型肠易激综合征或慢性特发型便秘。总部位于英国伦敦的阿斯利康和总部位于美国马萨诸塞州的铁木制药将共同致力于这一新药在包括中国在内的亚太市场的推广。便秘型肠
中科院上海技术物理研究所科研人员采用分子束外延技术和半导体微纳加工平台,自主完成了太赫兹量子级联激光器的结构设计、材料生长和器件制备,成功实现太赫兹量子级联激光器激射。这标志着我国科学家依靠自主创新在太赫兹量子级联激光器领域进入世界前列。太赫兹量子级联激光器(THz-QCL)是太赫兹频段最具
近期,中国科学院合肥物质科学研究院固体物理研究所副研究员张俊喜与中国科学技术大学光学与光学工程系、英国Aston大学光子技术研究所(AIPT)、澳大利亚国立大学非线性物理中心等单位科研人员合作,在贵金属纳米结构表面等离激元研究中取得系列进展。实现光与物质之间强的相互作用在设计光子器件上有重要
近日,南京大学固体微结构物理国家重点实验室李涛教授、祝世宁院士研究组报告研制出迄今为止尺寸最小(14×14μm2)的光量子控制—非门,该成果近期发表在《自然—通讯》。据悉,该量子逻辑门也是国际上首个基于等离激元体系的具有光量子信息处理功能的量子器件,能进行二比特量子操作,可作为光量子集成芯片
超声波它激式驱动板是一种将电能转换为超声波能量的设备,主要用于驱动超声波换能器产生高频振动,进而实现各种超声波应用。以下是对超声波它激式驱动板的详细解析:工作原理:超声波它激式驱动板采用高频振荡电路,通过控制电路的开关频率和占空比,输出一定频率和幅度的交流信号;这个交流信号经过功率放大后,驱动超声波
肠道感染:肠道感染可以导致肠道黏膜损伤和炎症,从而引起肠道功能紊乱。肠道菌群失调:肠道菌群失调是指肠道内有益菌和有害菌的比例失衡,有害菌增多会刺激肠道黏膜,导致肠道功能紊乱。神经调节异常:肠道的运动和分泌受到神经调节的控制,神经调节异常可能导致肠道运动和分泌的紊乱。精神因素:精神因素
如何在微观世界里更好地操控光,让通信、成像等技术实现新飞跃?我国一支科研团队通过国际合作,在极化激元领域取得最新进展,有望实现纳米尺度上光的精确操控并提升纳米级光电互联和光学传感等应用水平。研究成果18日由国际学术期刊《自然·纳米技术》在线发表。极化激元是一种由入射光与材料表界面相互作用形成
使用YD串激试验变压器做交流单台试验时,要插入短路杆(串级抽头接线杆也可插入);做直流试验时,要抽出短路杆和串级抽头接线杆;当用于串级高压试验时,须将短路杆和串级抽头接线杆同时插入(变压器均压罩上打有“C”标记的为串级抽头接线杆,“D”标记的为短路杆)。使用YD□变压器做直流耐压或直流泄漏试验时
串激式高压试验变压器是在同类产品YDJ型高压试验变压器的基础上,按试验变压器国家标准DL/T848.2-2004要求,经改进后生产的一种高压试验变压器产品,本系列产品与同类YDJ型产品相比较具有体积小、重量轻、结构紧凑、运输方便等特点。实用于电力、工矿、科研等部门,对各种高压电气设备、电气元件、