多孔碳材料常用的制备方法及应用检测资讯

多孔碳材料常用的制备方法有活化法、模板法和溶胶-凝胶法。

1.1活化法

活化法是将碳前驱体与活化剂混合后在高温惰性气体的条件下在碳前驱体上发生造孔反应的一种方法。活化法分为物理活化法和化学活化法,物理活化法包括两个步骤:(1)利用高温(通常800℃以上)将碳前驱体进行碳化;(2)使用水蒸汽或者二氧化碳作为活化剂与碳前驱体反应达到造孔的目的。然而物理活化法只发生在碳材料的表面,活化作用力较弱,因此大多采用化学活化的方法。化学活化法利用化学试剂在高温条件下与碳前驱体反应以达到造孔的目的。常用的活化试剂有KOH、KHCO3、NaHCO3、H3PO4和ZnCl2等。

早些时候,研究人员大都采用KOH作为活化剂,用于得到具有超大比表面积的多孔碳。但采用KOH作为活化剂对多孔碳进行活化时,会使孔道崩塌而且也极易腐蚀设备,限制了它在工业上的应用。选用温和的试剂代替KOH更符合绿色化学的要求。

随后,Jiang等人设计了一种将生物质与KHCO3混合,经高温热解后获得3D分级孔结构碳材料的方法。研究发现,煅烧温度对孔结构的形成有一定的影响,当煅烧温度为400℃时,只能得到大孔结构,而煅烧温度达到800℃时可以形成具有微孔、介孔、大孔这3种类型的孔结构。

然而,仅采用KHCO3做造孔剂需要高的活化温度。为解决这一问题,Liang等人尝试以NaHCO3/KHCO3为活化剂,在600℃的活化温度下用狗尾草籽制备出氮、硫共掺杂多孔碳(NSPC),合成方法如图1所示。该多孔碳具有连续的3D互联蜂状结构,并且所得大孔孔径可达1μm。丰富的孔道联结以及大孔孔径明显增强了电化学性能,所得材料可以更好地应用于电化学领域。KHCO3与NaHCO3的共同协同作用,不仅可以降低碳化的温度,而且可以得到孔径更大的3D分级多孔碳。

图1氮、硫共掺杂多孔碳的合成方法示意图

采用活化法可以很方便地合成多孔碳材料,但在合成过程中易受到碱碳比和活化温度的影响,合成的碳材料一般孔结构不规则、不可调控。有研究发现采用模板法可以更好地调控孔结构以获得结构规则、性能高效的碳材料。

1.2模板法

模板法是将碳前驱体填充到模板内,然后对碳前驱体/模板进行高温加热,使碳前驱体逐渐碳化,最后将模板去除获得多孔碳材料的一种方法。模板的主要作用是提供制备相应多孔碳材料所需的模具,模板与碳前驱体之间不会发生相互作用,得到的多孔碳材料的孔结构与模板相似。根据模板与客体的作用力的不同,模板法可以分为硬模板法和软模板法。

1.2.1硬模板法

硬模板法中常用的模板剂有介孔SiO2纳米粒子和沸石。介孔SiO2纳米粒子在颗粒大小和孔径两个维度上具有纳米尺寸,表现出高的比表面积和均匀的孔结构,通常用作硬模板剂合成多孔碳材料。

介孔SiO2纳米粒子作为模板剂容易发生团聚的现象,导致多孔碳材料的性能下降。沸石是一类具有微孔结构的硅铝酸盐材料,也是硬模板法中常用的模板之一。以沸石作模板时,通常要求碳前体体积小而且具有一定的亲水性,可以进入沸石的微孔内进行沉积,如:丙烯、乙炔。

然而,采用小分子的乙醇、丙烯等作为沸石模板的碳源,在碳化过程中会使孔道外一些非选择性的碳发生沉积。

硬模板法可以得到结构有序的材料,但是存在硬模板剂毒性强的问题,在后期处理时还需加入酸或者碱去除模板,增加了成本,这些因素都阻碍了硬模板法的实际应用。

1.2.2软模板法

软模板法利用碳前驱体与软模板剂通过氢键、疏水/亲水相互作用等一些化学相互作用进行自组装,碳前驱体经过碳化后得到多孔碳材料的一种方法。

与硬模板法相比,软模板剂与碳前体之间的相互作用力也促进了多孔碳材料孔隙率的增加,同时软模板法在合成过程中采用的模板剂可以采用更温和、更安全的方法去除。

1.3溶胶-凝胶法

溶胶-凝胶法是通过醇盐或者金属无机盐与溶剂混合形成溶液,经水解、缩聚形成溶胶-凝胶,随后经过陈化、干燥、低温烧结等工艺来制备多孔碳材料的一种方法。在采用溶胶-凝胶法合成多孔碳材料时,常常会在干燥阶段造成孔道结构的坍塌。为避免此现象,常采用模板法辅助溶胶凝胶的方法合成多孔碳材料。

综上,在3种合成方法中,活化法操作方便,但合成的多孔碳材料孔道不均匀;模板法可利用模板的有序结构对孔道进行调节,这促使模板法发展迅速;溶胶-凝胶法操作简便、反应条件温和,但是反应过程中易出现孔道坍塌的现象;溶胶-凝胶法辅助模板法恰好弥补了这一缺陷。所合成的多孔碳材料具有较大的比表面积和丰富的孔道结构,通过在合成过程中引入活性位点,所得材料可以应用于电化学、吸附、催化等不同领域。

2、多孔碳材料的应用

2.1超级电容器

超级电容器是一类与蓄电池相似但又不同于蓄电池的存储器件,按照电容储存机制的不同,超级电容器可以分为双电层电容器和赝电容器。超级电容器具有高的功率密度、高电容值以及较长的循环寿命等优势,可以应用于计算机、通信、国防等领域。在实际应用过程中常常存在比电容低、能量密度低等问题。针对此问题,目前一般采用增大比表面积的方法。较大的比表面积可以促进离子的吸附进而提高超级电容器的比电容。

生物质泛指通过光合作用形成的有机生物体如动植物、微生物等。由于生物质本身富含丰富的孔结构,因此被应用于制备多孔材料进而应用在超级电容器。

通过增大超级电容器的比表面积可在一定程度上提高电容器的比电容,进而提高超级电容器的能量密度。但是,在合成过程中需要用到活化剂,而过度活化会造成孔道崩塌,不利于离子在孔道内的运输,造成比表面积虽然很大,但能量密度并不是很高。有研究表明,通过调节电解质离子进出通道的孔结构是一种获得高能量密度的好方法。

除了增大比表面积和改善离子进出孔道外,还可以使用具有高电导率的材料提高超级电容器的能量密度,特别是配位聚合物。

超级电容器具有快速的存储和释放电荷的功能,可以实现快速的充放电功能。采用3D孔结构的材料可以调节离子进出通道,有效防止了离子进出孔道的坍塌,从而改善超级电容器能量密度低的问题。

2.2多孔碳材料的吸附应用

2.2.1对CO2的吸附和转化

多孔碳材料因其独特的理化性质,可以有效对CO2进行吸附和转化。大的比表面积和微孔结构保证了多孔碳材料对CO2的吸附,然而对CO2的转化还需要拥有优良的活性位点。

2.2.2对重金属离子的吸附

重金属离子具有显著的毒性而且难以被降解,常采用吸附剂进行吸附。活性炭表面官能团数目较少,用作吸附剂时需要对其表面进行化学改性以增加官能团的数目,进而促进对溶液中重金属离子的吸附。

活性炭的表面活性较差,需要借助改性剂对表面进行改性,过程繁琐。分级多孔碳具有宽的孔径分布、大的孔体积和较高的比表面积等特点,增强了分级多孔碳对溶液中重金属离子的吸附性能。

2.3多孔碳材料作多相催化剂载体

多孔碳材料具有良好的化学和物理稳定性以及较高的机械强度,是良好的催化剂载体。虽然均相催化具有高的反应性和选择性,但是产物与反应物难分离,限制了均相催化的应用范围。有研究发现,将金属负载在多孔碳材料上用于多相催化时具有易分离、易回收、提高催化效率等优点。

2.3.1负载贵金属纳米粒子

负载贵金属纳米粒子特别是负载Au和Pd表现出优异的催化性能。然而,载体的种类和性质会对催化剂的性能产生很大的影响。研究发现,当催化剂同时负载Au和Pd纳米粒子时表现出的催化活性要比负载单一的Au或Pd催化活性高几倍。

虽然负载贵金属多相催化剂可以获得更高的选择性和转化率,但是贵金属价格昂贵,生产成本高在一定程度上限制了贵金属多相催化剂的应用。

2.3.2负载非贵金属纳米粒子

过渡金属具有价格低廉、催化效率高等优点被广泛应用在催化领域。有研究表明,双金属纳米粒子与多孔碳载体之间存在界面协同效应,这种协同效应促使双金属纳米粒子的催化效率优于单金属纳米粒子。利用双金属之间的协同作用可以有效地消除副反应的活性位点。

多孔碳材料具有特殊的孔道结构,纳米粒子具有特殊的高比表面积和体积比,双金属纳米粒子与多孔碳材料之间的相互作用以及双金属之间的协同作用特别是Ni元素的添加拓宽了多孔碳载体的多相催化领域。

3、结语

多孔碳材料可以通过活化法、模板法以及溶胶-凝胶法合成。采用活化法可以获得较大比表面积的多孔碳,但是易造成孔道的坍塌;模板法可以得到孔道有序的模板碳,更有利于实际应用;溶胶-凝胶法操作简便但周期长。目前,一般采用几种合成方法共同使用以达到研究者想要的多孔碳材料。

优良的化学稳定性、导电性以及可调节的孔道促进多孔碳材料广泛应用在超级电容器、吸附、催化领域。通过增大比表面积和改善离子进出通道有效地提高了超级电容器的能量密度。在多孔碳材料的孔道内引入较多的活性位点有效地改善了多孔碳材料的吸附性能和催化性能。

多孔碳材料具有很高的发展潜能,其合成方法仍在不断优化,特别是对于孔径分布以及孔结构的调控方面仍会进行深入探索,实现更高效、更绿色的合成新材料并拓展应用领域是研究者共同的追求。

THE END

探索和开发低成本超长寿命高性能的氧还原反应非贵金属催化剂(ORR)以取代铂基催化剂用于电化学能量转换装置仍然是一个巨大的挑战。尽管有几种非贵金属催化剂(N掺杂石墨烯过渡金属纳米粒子单原子金属氮碳等)。虽然与商用铂碳相比,它们的催化性能可以媲美现有催化剂,但它们的长期耐用性,特别是在苛刻的电解液中的耐久性,在实际应用中仍然不能令人满意。来自湖南大学中国农业大学和剑桥大学的学者合成了一种的Fe3CNG催化剂,并对其进行了研究,以了解其在锌空气电池中的催化降解行为。实验分析和理论计算表明,由于Fe3C量子点提供了快速的电子转移到NG的价带,由Fe3C量子点和N掺杂石墨烯碳(Fe3CNG)形成的MottSchottky异质结提高了ORR。分子动力学模拟表明,在腐蚀性极强的电解液中,NG中的石墨烯结构相对稳定,避免了Fe3C量子点的腐蚀。将锌/石墨烯复合薄膜与固体电解液相结合,优化后的含Fe3CNG催化剂的锌空气电池具有高开路电压1.506V,高能量密度706.4Whkg1,以及长达1000h的长期稳定性。相关文章以“NonNobleMetalCatalystandZn/GrapheneFilmforLowCostandUltraLongDurabilitySolidStateZnAirBatteriesinHarshElectrolytes”标题发表在AdvancedFunctionalMaterials。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200397图1.Fe3C@N/MCHS和Fe3CNGMottSchottky异质结制备示意图.图2.所制备的Fe3C@N/MCHSS的形态特征:a)扫描电子显微镜图像;b)电子显微镜图像;c,d)高分辨电子显微镜图像;以及e)典型的电子显微镜图像和相应的CNO和Fe元素映射;f)C和Fe元素的组合映射图像;g)亮场和h)暗场电子显微镜图像;i)相应的NG和Fe3C的HAADFSTEM图像。图3.a)镍泡沫上Fe3C@N/MCHSs阴极的制造工艺,b)固态电解质的制备,c)柔性Zn/石墨烯阳极电极的制备。图4.a)商用Pt/CN/MCHSS和Fe3C@N/MCHSS在N2和O2饱和的0.1MKOH中以50mV/s的扫描速率的CV;b)在O2饱和0.1MKOH下,在1600rpm转速下各种电催化剂的LSV;c)在O2饱和的0.1MKOH中的Fe3C@N/MCHSS在不同的转速下的LSV和(插图)相应的KL曲线;d)用于甲醇交叉试验的商用铂/C和Fe3C@N/MCHSS的计时电流曲线;f)与最先进的单一催化剂的比较;g)锌空气电池示意图;h)开路电压;i)速率性能;j)比容量;k)功率密度和l)具有铂碳和Fe3C@N/MCHSS催化剂的锌空气电池的充放电循环次数。图5.Fe3C@NG的莫特肖特基异质结示意图:a)接触前和b)接触后;c)ORR机制;d,e)Fe3C@NG模型的电荷分布;f)Fe3C@NG模型上的ORR过程;g)示意图能量溢出和h)G,NG,Fe3C和Fe3C@NG板的不同活性位点上ORR途径的能量变化;i)在Fe3C@NG上以不同电位下的能量跃升;j)在0.5MH2SO4溶液中Fe3C@NG的分子动力学(MD)模拟。综上所述,本文报道了一种非贵金属Fe3CNG催化剂,其催化活性和耐久性可与商用铂/碳相当,用于固态锌空气电池的实用ORR。揭示了Fe3CNG催化剂中的MottSchottky等促进了电子转移和电荷密度重分布对催化剂性能的调节作用。特别是对于Fe3CNG异质结,通过适当的设计和调节,由于莫特肖特基异质结和电荷密度的重新分布,同时实现了快速的电子转移和低能垒。分子动力学模拟表明,石墨烯层阻止了Fe3C与H3O+OH和H2O之间的接触,唯一影响降解的是石墨烯层中掺杂的N原子。通过制备锌/石墨烯复合薄膜和固态电解液,进一步解决了锌空气电池普遍存在的自腐蚀锌枝晶稳定性差等问题,优化后的Fe3CNG催化剂锌空气电池的开路电压达到1.506V,能量密度达到706.4Whkg1,长期稳定性达到1000h,向实际应用迈进了一大步。本文的工作为理解用于ORR的非贵金属Fe3CNG异质结构催化剂提供了一些新的见解,也为制造低成本高能量密度长时间循环的锌空气电池提供了新的途径。(文:SSC)本文来自微信公众号“材料科学与工程”。欢迎转载请联系,未经许可谢绝转载至其他网站。推荐阅读:欢迎微信后台回复“应聘编辑”加入我们实用!Origin软件使用经典问题集锦免费下载:18款超实用软件轻松搞科研合作投稿点击此处[Er1gF7PbJUGeb2rznpW3zw==.jpg]欢迎留言,分享观点。点亮在看材料科学与工程

1.金属催化剂有哪些种类金属催化剂的优缺点→MAIGOO知识金属催化剂有哪些种类 金属催化剂的优缺点 摘要:金属催化剂是固体催化剂中的一种,以其优良的活性、选择性、稳定性以及协同效应而广泛用于各种化工、医药、环保及新能源等领域。金属催化剂有哪些种类?按催化剂的活性组分是否负载在载体上分非负载型和负载型金属催化剂,按催化剂活性组分是一种或多种金属元素分单金属https://www.maigoo.com/goomai/262724.html
2.贵金属催化剂和非贵金属催化剂的有哪些优缺点贵金属催化剂和非贵金属催化剂的有哪些优缺点 贵金属催化剂的起燃温度低,活性高,但在较高的温度下易烧结,因升华而导致活性组份流失,使活性降低,而且贵金属资源有限,价格昂贵,所以无法大规模使用。但其在低温时的催化活性是其他催化剂不能比的,所以现在还用于催化燃烧的起燃阶段。https://www.chem17.com/tech_news/detail/2185811.html
3.电解水制氢:如何设计金属碳化物催化剂?金属碳化物HER 氢气是重要的清洁能源,具有来源广、能量密度高、无污染等优点。电解水制氢是高效、绿色的制氢途径,但严重依赖贵金属Pt催化剂,亟需发展经济、高效的非贵金属电催化剂。过渡金属碳化物具有类铂的电子性质和催化行为,是一种潜在的析氢电催化剂。近年来,相关https://www.antpedia.com/index.php?action-viewnews-itemid-2272713
4.电解水制氢电源催化剂和电解质的研究进展与展望开发高效、低成本的催化剂是电解水制氢的关键步骤。贵金属催化剂由于其成本高、存储量低,难以支持大规模应用。过渡金属和非金属材料成本低,具有较大的丰度,是替代贵金属催化剂的理想材料。图7比较了不同类型的催化剂。与贵金属催化剂相比,过渡金属催化剂结构不稳定,催化机理复杂,非金属催化剂的活性有待提高。这三类https://blog.sciencenet.cn/home.php?mod=space&uid=3411509&do=blog&id=1446951
5.非贵金属基催化剂用于催化降解有机污染物的研究进展当前,随着环境问题的日益加剧,工业废水产生了大量有毒的有机化合物,将这些物质释放到水生环境中会对人类健康造成极大的威胁,因此,对有机污染物的合理处理变得尤为重要,制备具有高催化效率、高循环稳定性、低成本和绿色环保的非贵金属催化剂可以促进绿色可持续发展。阐述了非贵金属基催化剂的研究进展,包括最常用的单/https://snm.usst.edu.cn/html/2022/2/20220201.htm
6.一种非贵金属电解水催化剂及其制备方法.pdf一种非贵金属电解水催化剂的制备方法,涉及催化剂技术领域,解决了电解水在高电流密度下催化剂性能受限的问题,可应用于电解水制氢过程中。将非贵金属前驱体溶于水中,得到第一溶液;将界面诱导剂前体溶于水中,得到第二溶液;搅拌条件下将所述第二溶液加入到所述第一溶液中,得到第三溶液;将沉淀剂分散在水中,得到沉淀https://max.book118.com/html/2023/0819/6023122200005214.shtm
7.化学所在新型低成本非贵金属电解水催化剂研究方面取得系列进展在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学所分子纳米结构与纳米技术院重点实验室胡劲松课题组致力于高性能非贵金属电催化剂的设计、可控构筑与催化机制研究。他们近年在非贵金属电解水催化剂高本征活性位点的设计与调控、高密度高活性有效催化位点的设计与可控构筑、基元反应导向的高活性位点组合设计、https://www.nsfc.gov.cn/csc/20340/20343/38599/index.html
8.基于非贵金属催化剂的电催化水分解与光催化CO2还原研究分类号密级UDC编号硕士研究生学位论文论文题目(中文):基于非贵金属催化剂的电催化水分解与光催化CO2还原研究论文题目(英文):ElectrocatalyticwatersplittingandphotocatalyticCO2reductionbasedonnon-noblemetalcatalysts学院化学化工学院专业名称高分子化学与物理研究方向电催化与光催化研究生姓名**辰学号1523110009导师姓名**甫https://www.docin.com/p-2271242130.html
9.单原子催化剂综述梳理:基本概念制备方法及能源催化应用本文从合成方法的角度综述了单原子催化剂的稳定策略,并详细分析了它们的优缺点;重点讨论了聚合物在制备或催化反应过程中作为合成模板、金属单原子载体、包封剂和保护剂等方面的作用,以及它们在单原子催化剂制备和稳定方面的应用;重点介绍了含氮基团聚合物在制备过程中捕获单个原子和提高碳基载体导电性方面的特殊功能;https://www.scholat.com/userPostMsgPage-getDynamic.html?usermessageid=209716
10.基于层状前体构筑非贵双金属催化剂及其催化生物质转化性能研究基于层状前体构筑非贵双金属催化剂及其催化生物质转化性能研究,LDHs,非贵金属,双金属,生物质,催化加氢,氧缺陷,氢转移,近年来,按照当前科技和工业的发展速度,化石能源的消耗在接下来的数十年内还会大幅增长,而消耗化石能源带来的环境问题也将更加严重https://read.cnki.net/web/Dissertation/Article/-1020143194.nh.html
11.制氢未来的这张膜:阴离子交换膜,如今可以摆脱贵金属催化剂的“我们实现了迄今为止全非贵金属基阴离子交换膜电解水制氢技术实验室规模的最先进水平,并且完全摆脱了传统的铱/铂贵金属催化剂。”西湖大学讲席教授、中国科学院院士孙立成如是说。 不久前,他带领团队提出了一种稳定的阴离子交换膜构建策略,实现了高性能全非贵金属催化剂的阴离子交换膜电解水。在 2.0V 以及 80https://www.xianjichina.com/special/detail_550962.html
12.生物质平台分子催化转化:高性能非贵金属催化剂的理论设计负责人:张欣依托单位:北京化工大学批准年份:2021前往基金查询 项目简介 项目名称 生物质平台分子催化转化:高性能非贵金属催化剂的理论设计 项目批准号 学科分类 暂无数据 资助类型 暂无数据 负责人 张欣 依托单位 北京化工大学 批准年份 2021 起止时间 202201-202612 批准金额 60.00万元 摘要 暂无数据 https://www.medsci.cn/sci/nsfc_show.do?id=a112103155626