“在过去的30年里,用于氧还原反应的Pt基催化剂的开发取得了进展,一些催化剂现在已经商业化生产,并用于汽车和其他应用的聚合物电解质燃料电池(PEFC)。然而,还需要进一步提高催化活性。在实验室中,研究人员已经开发出各种催化剂,它们的活性远远高于商业催化剂,这些最先进的催化剂具有提高能量转换效率和减少PEFC中Pt载量的潜力。在燃料电池汽车应用之前,有几个技术问题必须解决,这就要求燃料电池汽车具有高功率密度和高耐久性,以及高效率。本文描述了Pt基催化剂的发展历史和最新的研究,以找出这些技术问题的起源。并讨论了克服这些问题的有希望的战略。”
氢气是清洁和可持续经济中最有前途的能源载体之一。将氢的化学能转化为电能的聚合物电解质燃料电池(PEFC)显示出巨大新能源汽车的潜力,几家汽车制造商已经开始将燃料电池电动汽车(FCEV)商业化。然而,要使FCEV得到更广泛的应用,还需要进一步的技术突破,其中最重要的问题之一是电极中的催化剂。在下文中,从PEFC性能的角度解释了这个问题的细节,PEFC的性能对车辆的价值有很大影响。
在图1中,显示了典型的电池性能曲线(电流-电压)。低电流密度区域的电压几乎由阴极中氧还原反应(ORR)的催化活性决定,这对汽车应用中的能量转换效率有很大影响,因为电池主要运行在该区域。相反,中到高电流密度区域的电压决定了功率密度,而中到高电流密度区域的电压受电池中的质量传输特性的强烈影响。在某些情况下需要高功率密度,包括车辆的剧烈加速。在寿命结束时性能的保持率也很重要,因此要求催化剂具有较高的耐久性。还应指出,需要减少使用昂贵的材料和部件,例如用于催化剂的贵金属、用于膜和电极的聚合物、气体扩散层和双极板,以便更广泛地分布FCEV。然而,在不牺牲性能和成本的情况下提高耐用性是一个巨大的挑战,因为这些因素往往受到权衡关系的影响。本文对ORR电催化剂的研究历史进行了总结,指出了这些权衡取舍的技术难点。然后讨论了开发阴极材料和设计电极结构的有效策略
1催化活性
除了合金化效应外,对单晶表面的分析表明,(111)面的尺寸本身也影响比活性。阶梯状单金属铂表面的活性高于(111)平表面,并在一定的(111)阶梯宽度(3~4个原子)处达到最大值,并用羟基结合强度与阶梯宽度的依赖关系来解释这一结果。
除了反应中间体的性质外,还发现离聚物中的阴离子等副产物的性质影响铂表面的催化活性(图2E)。用于PEFC催化层的离聚体也具有阴离子部分,并已被发现通过阴离子部分在ORR活性中心上的吸附来抑制铂催化剂的ORR活性(图2F)。抑制程度最高达到约80%(在最坏的情况下只有20%的催化剂表面可用),表明减轻离聚体诱导的催化剂中毒对于提高电池的催化活性至关重要。总之,将形状可控的铂纳米催化剂与减轻离聚体引起的催化剂中毒相结合,可以进一步提高PEFC的效率,减少铂的使用量。
2催化剂表面附近的传质
3耐久性
在实践中,通过控制系统限制电位变化和优化催化剂成分(图4B),可以缓解催化剂的降解;这些方法也可能适用于形状控制的铂合金催化剂。然而,固有催化剂耐久性的改进可以简化控制系统,并进一步延长电池的寿命。
为此提出了各种方法(图4C)。结构有序的金属间化合物铂合金已被发现比相应的无序铂合金表现出更高的稳定性和活性。在八面体铂镍纳米颗粒中掺入Rh可以稳定颗粒形状。研究发现,在球形PtNi纳米粒子中掺入氮可以形成金属间化合物PtNiN相,并阻止镍从中溶解,同样的概念也可以应用于形状控制催化剂。据报道,通过改变合成条件在八面体铂镍纳米催化剂上形成铂层也可以提高催化剂的耐久性。
除了这些方法(即催化剂方面的材料开发)外,使用外来材料进行表面改性已成为一种有前途的策略。例如,研究发现,在催化剂表面涂上由二氧化硅或碳组成的均匀涂层可以缓解催化剂的降解。最近的研究表明,涂层还可以提高催化剂的质量活性,并且这种改进部分归因于减少了离聚体对催化剂的吸附。然而,在上述的铂/离聚体界面上,碳覆盖层比致密离聚体层具有更强的阻氧性,因此在应用这一概念时需要采取一些对策来抵消对功率密度的负面影响。另一种策略是位置选择性修饰,其中稳定的物质被选择性地沉积在脆弱的和ORR不活跃的位置上,例如铂纳米颗粒的边缘和角落,因此预计催化剂的耐用性将得到有效改善,而不会增加O2的渗透阻力。各种修饰剂,包括金和有机分子,已经被发现通过改变催化剂的电子态或界面物种之间的相互作用来改善剩余自由位的局部ORR活性。因此,位置选择性修饰可以提高催化剂的质量活性。
从其他角度来看,还有几种方法。碳载体在PEFC的阴极条件下热力学不稳定,用氧化物等更稳定的材料取代碳载体有望抑制由载体腐蚀和铂移动引起的铂聚集。提高这些载体的稳定性和加强催化剂和载体之间的锚定效应对于在启动/关闭条件下遇到的高电位至关重要。降低铂/离聚体界面电阻也有利于耐久性。由于具有较高的氧气渗透电阻率,催化剂颗粒需要足够小,以实现如上所述的高功率密度操作所需的高比表面积。如果每铂表面积的氧气渗透阻力降低,更耐用和更活性的催化剂,如纳米结构薄膜铂合金催化剂和PtxY球形纳米催化剂,可能成为FCEV的候选应用。
4未来展望
如上所述,要使PEFC更适合作为汽车动力源,必须解决几个有关阴极催化剂的技术问题。人们已经提出了各种材料作为催化剂、载体和界面(表面改性)的组成部分,关键问题是如何在未来的PEFCs中考虑它们的正负效应以及兼容性,成功地将它们结合在一起(图5)。例如,由于其尺寸的原因,高活性的铂纳米线可能不能被放置在介孔碳的孔内。相反,当使用固体碳载体时,铂/离聚体的界面问题应该得到解决。据报道,固体碳载体的功率密度低于介孔碳。使用适当材料的覆盖层可以实现较少的吸附和更高的O2渗透性界面,尽管这可能会阻止铂离子的移动,这是Ostwald成熟的原因。如果原始催化剂不能达到所需电池性能所需的目标ORR活性,则必须进行表面修饰,例如上述的位置选择性修饰,以提高固有活性。
为了将高活性催化剂应用于实际电池,分析它们在广泛的潜在范围内的行为也是很重要的。在旋转圆盘电极(RDE)技术的模型实验中证实的高活性通常在MEA测试中没有得到证实。RDE和电池测试之间的性能差距可能是由于电极电位的差异和活性的电位依赖性;也就是说,电池性能通常在0.9V-0.6V的电位范围内评估,而RDE测试的可用电位范围高于0.9V,因为质量传输限制。其他使用高速反应物供应的模型实验,如所谓的浮动电极技术和气体扩散电极技术,对于分析宽电势范围内的活度是有用的。
如上所述,形状可控催化剂在高温(>60°C)下的燃料电池配置中存在耐久性低的严重问题,因此远未得到实际应用。除了上述提高催化剂耐久性的方法外,还需要进一步的原位或操纵性表征分析和数学模型,以阐明形状控制催化剂的降解机理。此外,燃料电池配置的耐久性测试标准化是必要的,因为许多在RDE测试中表现出高耐久性的形状控制催化剂在燃料电池测试中被发现很容易降解。如果不解决高活性催化剂的耐久性问题,只有传统的球形铂基催化剂是可行的,那么铂在FCEV中的使用量将不会显著减少。从资源的角度来看,取决于铂的使用情况和燃料电池车的传播程度,铂回收将发挥关键作用。
最后,成本是决定性因素,这是工业产品的一贯做法。当然,贵金属的原材料成本是电池总成本的最大贡献者之一。然而,其他零部件的成本不容忽视,因为它们大多是定制的。由于生产成本也是不可忽视的,要求步骤过于复杂的工艺是不可接受的。特别是对于形状可控的铂催化剂,在PEFC操作之前需要合成封端剂并将其从催化剂表面移除,可能会显著增加生产成本。此外,形状可控催化剂的合成过程通常需要有机溶剂,与水溶剂相比,有机溶剂在材料和处理方面都预计会很昂贵。因此,开发不使用封端剂和有机化合物的新的合成方法,或者发现处理这些化学物质的有效方法(如重复使用它们)也将是重要的主题。