燃料电池技术

中国科学院大连化学物理研究所大连116023

图1燃料电池工作原理

与原电池和二次电池不同的是,燃料电池发电需要有一相对复杂的系统。典型的燃料电池发电系统组成如图2所示,除了燃料电池电堆外,还包括燃料供应子系统、氧化剂供应子系统、水热管理子系统及电管理与控制子系统等,其主要系统部件包括空压机、增湿器、氢气循环泵、高压氢瓶等,这些子系统与燃料电池电堆(或模块)组成了燃料电池发电系统。燃料电池系统的复杂性给运行的可靠性带来了挑战。

图2燃料电池系统组成

图3燃料电池汽车动力链组成

2)Pt核壳催化剂利用非Pt材料为支撑核,表面贵金属为壳的结构,可降低Pt用量,提高质量比活性,是下一代催化剂的发展方向之一。如采用欠电位沉积方法制备的Pt-Pd-Co/C单层核壳催化剂总质量比活性是商业催化剂Pt/C的3倍,利用脱合金(de-alloyed)方法制备的Pt-Cu-Co/C核壳电催化剂,质量比活性可达Pt/C的4倍。Wang等人制备了以原子有序的Pt3Co为核,2-3个原子层厚度的铂为壳的核壳结构纳米颗粒,质量比活性与面积比活性分别提高到2倍和3倍,经过5000圈电压循环扫描测试后,原子有序的核壳结构几乎未发生改变。大连化物所以Pd为核、Pt为壳制备了Pd@Pt/C核壳催化剂,利用非Pt金属Pd为支撑核,Pt为壳的核壳结构,可降低Pt用量,提高质量比活性。测试结果表明氧还原活性与稳定性好于商业化Pt/C催化剂(如图6所示),其性能在电堆中的验证还在进行中。

炭纸

自制炭纸

商品炭纸

空隙率/%

78.7

78

透气率/ml·mm·cm-2·hr-1·mmAq-1

2278

1883

石墨化度/%

82.2

66.5

电阻率/mΩ.cm

2.17

5.88

拉伸强度/N·cm

30.2

50

除了改进气体扩散层的导电功能外,近些年对气体扩散层的传质功能研究也逐渐引起人们重视,日本丰田公司,为了减少高电流密度下的传质极化,开发了具有高孔隙结构、低密度的扩散层(如图9),扩散能力提高比原来提高了2倍,促进了燃料电池性能的提高。此外,微孔层的水管理功能逐渐引起研究者的重视,通过微孔层的修饰、梯度结构等思想,可以一定程度上改进水管理功能,,,,。

图10MEA组成示意图目前,国际上已经发展了三代MEA技术路线:一是把催化层制备到扩散层上(GDE),通常采用丝网印刷方法,其技术已经基本成熟;二是把催化层制备到膜上(CCM),与第一种方法比较,在一定程度上提高了催化剂的利用率与耐久性;三是有序化的MEA,把催化剂如Pt制备到有序化的纳米结构上,使电极呈有序化结构,有利于降低大电流密度下的传质阻力,进一步提高燃料电池性能,降低催化剂用量。其中第一代、第二代技术已基本成熟,国内新源动力、武汉新能源等公司均可以提供膜电极产品,大连化物所开发了催化层静电喷涂工艺,与传统喷涂工艺的CCM进行比较,其表面平整度得到改善,所制备的催化层结构更为致密,降低了界面质子、电子传递阻力,并进行了放大实验,在常压操作条件下单池性能可达0.696V@1Acm-2,加压操作条件下可提高至0.722V@1Acm-2,其峰值单位面积功率密度达到895-942mWcm-2(如图11所示)。

大连化物所研究团队从设计、制备、操作三方面出发进行调控,通过模拟仿真手段研究流场结构、阻力分配对流体分布的影响,找出关键影响因素,重点研究了水的传递、分配与水生成速度、水传递系数、电极/流场界面能之间的关系,掌握了稳态与动态载荷条件对电堆阻力的影响,保证电堆在运行过程中保持各节单池均一性,额定点工作电流密度从原来的500mA/cm2提升至1000mA/cm2,使电堆的功率密度得到大幅提升,在1000mA/cm2电流密度下,体积比功率达到2736W/L,质量比功率达到2210W/kg。目前,大连化物所已建立了从材料、MEA、双极板部件的制备到电堆组装、测试的完整技术体系。图15为大连化物所开发的燃料电池电堆。

图15大连化物所开发的燃料电池电堆日本丰田燃料电池电堆采用3D流场设计(图16所示),使流体产生垂直于催化层的分量,强化了传质,降低了传质极化,功率密度可达3.1kW/L。这种3D流场通常需要空压机的压头较高,以克服流体在流道内的流动阻力。

增湿器是燃料电池发电系统另一重要部件,燃料电池中的质子交换膜需要有水润湿的状态下才能够传导质子,反应气通过增湿器的把燃料电池反应所需的水带入燃料电池内部,常用的增湿器形式包括膜增湿器、焓轮增湿器等,原理是把带有燃料电池反应生成水的尾气(湿气)与进口的反应气(干气)进行湿热交换,达到增湿的目的。由于燃料电池薄膜的使用,透水能力增加,加大了阴极产生水向阳极侧的反扩散能力,使得阴阳极湿度梯度变小。这样,可以在一侧增湿即可满足反应所需的湿度要求。目前,发展趋势是采用氢气回流泵带入反应尾气的水,系统不需要增湿器部件,使得系统得到简化。

除了上述的系统部件外,系统的控制策略也非常重要。可以在现有材料的基础上通过优化控制策略,提高耐久性。基于燃料电池衰减机理,提出车用燃料电池的合理控制策略,规避如动态循环工况、启动/停车过程、连续低载或怠速等不利运行条件的影响,提高燃料电池系统的寿命。4.结束语燃料电池电动汽车以其动力性能高、充电快、续驶里程长、接近零排放的特点,是未来新能源汽车的有力竞争者。国际上特别是日本车用燃料电池技术链已逐渐趋于成熟,我国需要加大产业链建设,鼓励企业进行投入,发展批量生产设备,在产业链的建立过程中促进技术链的逐步完善。同时,在成本、寿命方面还要继续进行研发投入,激励创新材料的研制,加大投入强化电堆可靠性与耐久性考核,为燃料电池汽车商业化形成技术储备。

THE END
1.贵金属催化剂与非贵金属催化剂的区别贵金属催化剂及非贵金属催化剂特点 贵金属催化剂由于贵金属化学性质稳定,具有高催化活性,因此在VOCs催化燃烧中是首选催化剂。其适应性特别高,特别适合含C、H、O的挥发性有机物的催化燃烧,如烷烃、烯烃、芳烃、醇、酮、有机酸、酯等。贵金属催化剂广泛应用于汽车尾气处理、石油化工、煤化工、涂装、印刷等行业。https://baijiahao.baidu.com/s?id=1791669599730592438&wfr=spider&for=pc
2.三元催化器贵金属的作用分别是什么三元催化器含有的内部含有钯、铑、铂这样的稀有金属。稀有金属的价格都是比较贵的,也就导致了三元催化器的价格高。只要发动机一出现故障,就很容易导致三元催化器的损坏,三元催化器损坏之后大多数都是维修不了,只能进行更换新的三元催化器,如果只是清理干净三https://www.pcauto.com.cn/jxwd/4114/41142880.html
3.电解水制氢中的非贵金属催化剂之金属氮化物金属氮化物(TMNs)具有独特的物理和化学性质。一方面,氮原子的加入改变了母体金属d带的性质,导致金属d带的收缩,使得TMNs的电子结构更类似于贵金属(如Pd和Pt)。另一方面,氮由于原子半径小可以嵌套在晶格的间隙中,所以金属原子的排列总是保持紧密堆积或接近紧密堆积,赋予了TMNs较高的电子导电率。这些有前景的特性,再加https://wiki.antpedia.com/article-1558153-390
4.贵金属催化剂和非贵金属催化剂的有哪些优缺点贵金属催化剂和非贵金属催化剂的有哪些优缺点 贵金属催化剂的起燃温度低,活性高,但在较高的温度下易烧结,因升华而导致活性组份流失,使活性降低,而且贵金属资源有限,价格昂贵,所以无法大规模使用。但其在低温时的催化活性是其他催化剂不能比的,所以现在还用于催化燃烧的起燃阶段。https://www.chem17.com/tech_news/detail/2185811.html
5.非贵金属基催化剂用于催化降解有机污染物的研究进展当前,随着环境问题的日益加剧,工业废水产生了大量有毒的有机化合物,将这些物质释放到水生环境中会对人类健康造成极大的威胁,因此,对有机污染物的合理处理变得尤为重要,制备具有高催化效率、高循环稳定性、低成本和绿色环保的非贵金属催化剂可以促进绿色可持续发展。阐述了非贵金属基催化剂的研究进展,包括最常用的单/https://snm.usst.edu.cn/html/2022/2/20220201.htm
6.铁/氮/碳非贵金属氧还原电催化剂的制备表征和性能研究制备了以聚苯二胺(Poly PD)、苯二胺甲醛树脂(Poly(PD+F))、苯二甲酰苯二胺(Poly(PD+DA))、苯胺和吡咯共聚物(Poly(An+Py))、三聚氰胺甲醛树脂(Poly(M+F))、Hemin和2-乙酰基吡咯(2-AcPy)等多种含氮物质为氮源的非贵金属ORR催化剂。取得了如下重要结果: (1)炭黑经过稀硝酸氧化处理,再包裹聚苯胺,可以https://www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020311519931.html
7.燃料电池与汽车专利,有效提升非贵金属催化剂的稳定性能金融界2023年12月6日消息,据国家知识产权局公告,一汽解放汽车有限公司申请一项名为“非贵金属催化剂及其制备方法、燃料电池与汽车“,公开号CN117174924A,申请日期为2023年9月。 专利摘要显示,本申请涉及一种非贵金属催化剂及其制备方法、燃料电池与汽车。非贵金属催化剂的制备方法包括以下步骤:将含氨基的环状化合物、https://www.yoojia.com/article/9651271725827707962.html
8.钯钌催化剂(纯钯的金属制品及用途?)平泽回收相比非贵金属材料催化剂,贵金属催化剂具有不可替代的催化活性、良好的选择性、使用安全性、耐高温、抗氧化、耐腐蚀等综合优良特性,且废旧催化剂中所含贵金属可循环回收加工,是目前有机合成领域最重要的一类催化材料。 贵金属催化剂以产品活性、选择性、稳定性、使用寿命为关键评价指标。贵金属催化剂的催化活性组分主要https://www.pzgjs.com/68122.html
9.科学网—CarbonEnergy:石墨烯负载的非贵金属电催化剂在析氢反应基于此,文章总结了石墨烯负载的非贵金属催化剂的研究进展,其中包括硫化物、碳化物、硒化物、磷化物、氮化物和氧化物。总结了石墨烯负载非贵金属电催化剂作为贵金属纳米材料的替代物发展的前景和非贵金属纳米材料与石墨烯载体协同效应最大化的不同合成方法。 https://wap.sciencenet.cn/blog-3424837-1213602.html
10.化学所在新型低成本非贵金属电解水催化剂研究方面取得系列进展在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学所分子纳米结构与纳米技术院重点实验室胡劲松课题组致力于高性能非贵金属电催化剂的设计、可控构筑与催化机制研究。他们近年在非贵金属电解水催化剂高本征活性位点的设计与调控、高密度高活性有效催化位点的设计与可控构筑、基元反应导向的高活性位点组合设计、https://www.nsfc.gov.cn/csc/20340/20343/38599/index.html
11.关于贵金属在生产销售过程中的会计核算探讨B公司主要从事贵金属催化剂的研发与生产、催化应用技术的研究开发、废旧贵金属催化剂的回收及再加工等业务。公司贵金属催化剂产品以铂族金属(铂、钯、钌、铑、铱等)为催化活性组分,由于铂族金属价值较高且可回收循环利用的特点,而公司同时具有生产销售催化剂产品和回收废旧催化剂提炼贵金属原料的能力,因此B公司在销售https://www.shinewing.com/audit/practising/detail/64b8c313f678ac623dbc0275.html
12.基于层状前体构筑非贵双金属催化剂及其催化生物质转化性能研究基于层状前体构筑非贵双金属催化剂及其催化生物质转化性能研究,LDHs,非贵金属,双金属,生物质,催化加氢,氧缺陷,氢转移,近年来,按照当前科技和工业的发展速度,化石能源的消耗在接下来的数十年内还会大幅增长,而消耗化石能源带来的环境问题也将更加严重https://read.cnki.net/web/Dissertation/Article/-1020143194.nh.html
13.非贵金属催化剂非贵金属催化剂批发促销价格产地货源非贵金属蜂窝催化剂VOCs催化燃烧催化剂耐水型非贵金属催化剂 山东赤蓝环保科技有限公司2年 月均发货速度:暂无记录 山东 德州市 ¥19.00成交18316克 厂家供应抗毒性VOC催化剂 抗氯臭氧催化剂 蜂窝陶瓷载体金属催化 德州深林环境科技股份有限公司6年 月均发货速度:暂无记录 https://www.1688.com/chanpin/-B7C7B9F3BDF0CAF4B4DFBBAFBCC1.html
14.制氢未来的这张膜:阴离子交换膜,如今可以摆脱贵金属催化剂的“我们实现了迄今为止全非贵金属基阴离子交换膜电解水制氢技术实验室规模的最先进水平,并且完全摆脱了传统的铱/铂贵金属催化剂。”西湖大学讲席教授、中国科学院院士孙立成如是说。 不久前,他带领团队提出了一种稳定的阴离子交换膜构建策略,实现了高性能全非贵金属催化剂的阴离子交换膜电解水。在 2.0V 以及 80https://www.xianjichina.com/special/detail_550962.html
15.探索和开发低成本超长寿命高性能的氧还原反应非贵金属催化剂然而,银/金金属电极对卤离子的敏感性以及其高昂的成本阻碍了PSC的大规模商业化。PSCS中使用的碳电极具有优异的耐腐蚀性和强大的耐热、耐湿环境性能。由于电荷转移动力学的原因,碳基钙钛矿太阳能电池(C-PSC)在功率转换效率上远远落后于Ag/Au基的普通PSCs。https://www.1633.com/article/78982.html
16.生物质平台分子催化转化:高性能非贵金属催化剂的理论设计负责人:张欣依托单位:北京化工大学批准年份:2021前往基金查询 项目简介 项目名称 生物质平台分子催化转化:高性能非贵金属催化剂的理论设计 项目批准号 学科分类 暂无数据 资助类型 暂无数据 负责人 张欣 依托单位 北京化工大学 批准年份 2021 起止时间 202201-202612 批准金额 60.00万元 摘要 暂无数据 https://www.medsci.cn/sci/nsfc_show.do?id=a112103155626