[转]初中数学解题方法与技巧徐海名师工作室

要学好数学,学会解题是关键。在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。

一、数学思想方法在解题中有不可忽视的作用

解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。

基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说“如果没有反思,就错过了解题的的一次重要而有意义的方面。”

教师在教学设计中要让解学生好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。

1.函数与方程的思想

2.数形结合的思想

3.分类讨论的思想

分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准;③按所分类别进行讨论;④归纳小结、综合得出结论。注意动态问题一定要先画动态图。

4.转化与化归的思想

转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

常见的转化方法有

(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.

(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.

(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.

(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.

(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题.

(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.

(7)坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径

转化与化归的指导思想

(1)把什么问题进行转化,即化归对象.

(2)化归到何处去,即化归目标.

(3)如何进行化归,即化归方法.

化归与转化思想是一切数学思想方法的核心.

二、中学数学解题中的的基本方法

1.观察与实验

(1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

(2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2.比较与分类

(1)比较法

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

(2)分类的方法

分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的k在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3.特殊与一般

(1)特殊化的方法

特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

(2)一般化的方法

4.联想与猜想

(1)类比联想

类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:

(2)归纳猜想

牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。

归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。

5.换元与配方

(1)换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

(2)配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式

6.构造法与待定系数法

(1)构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。

(2)待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

7.公式法与反证法

(1)公式法

利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:

(2)反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。

三、中学数学新题型解题方法和技巧

1.数学探索题

所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。

条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。

结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。

规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。

活动型探索题:让学生参与一定的社会实践,在课内和课外的活动中,通过探究完成问题解决。

推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。

探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的思维方式的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、反思、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。

2.数学情境题

情境题是以一段生活实际、故事、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。

如老师在讲有理数的混合运算时,

3.数学开放题

数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。

(1)数学开放题一般具有下列特征

①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。

②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。

③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。

④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。

⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。

⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。

(2)对数学开放题的分类

从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。

从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的创新思维,培养了学生的创新技能,提高了学生的创新能力。

(3)以数学开放题为载体的教学特征

①师生关系开放:教师与学生成为问题解决的共同合作者和研究者

②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。

③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。

(4)开放题的教育价值

有利于培养学生良好的思维品质;

有助于学生主体意识的形成;

有利于全体学生的参与,实现教学的民主性和合作性;

有利于学生体验成功、树立信心,增强学习的兴趣;

有助于提高学生解决问题的能力。

4.数学建模题(初中数学建模题也可以看作是数学应用题)

初中数学应用问题的三种类型

(1)探求结论型数学应用问题

根据命题中所给出的条件,要求找出一个或一个以上的正确结论

(2)跨学科的数学应用问题

①数学与物理

②数学与生化

以上两题是与生物和化学有关的问题,体现了数学在生化学科的应用。

总之,数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。中考数学应用问题热点题型主要包括生活、统计、测量、设计、决策、销售、开放探索、跨学科等等,中考在强化学生应用意识和应用能力方面发挥及其良好的导向功能。这就要求我们在平时教学中善于挖掘课本例题、习题的潜在的应用功能。巧妙地将课本中具有典型意义的数学问题回归生活、生产的原型,创设一个实际背景,改造成有深刻数学内涵的实际问题,以增强应用意识,发展数学建模能力。

四、掌握初中数学解题策略提来提高数学学习效率

(1)认真分析问题,找解题准切入点

由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:已知:AB=DC,AC=DB。求证:∠A=∠D。

此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。

(2)发挥想象力,借助面积出奇制胜

由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的宽与长之比为1∶2;故选(C)。

此题利用了“相似多边形面积的比等于相似比平方”这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。

(3)巧取特殊值,以简代繁

初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。

例2、分解因式:x2+2xy-8y2+2x+14y-3。

思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。

解:令y=0,得x[sup]2[/sup]+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,1×4+(-2)×1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。

其实,用特殊值法,也叫取零法。这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A、把多项式中的一个字母设为0所得的结果分解因式,B、把多项中的另一个字母设为0所得的结果分解因式,C、把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。

(4)巧妙转换,过渡求解法

在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。

例如:已知:AB为半圆的直径,其长度为30cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。

本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。

综上所述,初中数学解题存在很强的灵活性。有的数学题不只一种解法,而有多种解法,有的数学题用常规方法解决不了,要用特殊方法。因此,解数学题要注意它的灵活性和技巧性。解题技巧在升学考试中至关重要,不能忽视。初中数学教师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。

THE END
1.法的分类从对人的效力看,适用于特定公民的法律(如兵役法)为特殊法,适用于全国公民的法律为一般法。特殊法与一般法的关系在于在特殊情况下一般可优先适用特殊法。 公法和私法资产阶级法学界比较普遍地把法划分为公法与私法,这种分类法最早由古罗马法学家D.乌尔比安(约170~228)提出,为后代法学家广泛采用。有不少法学家依https://baike.sogou.com/m/fullLemma?lid=76337107
2.法的种类有哪些按法的内容、效力和制定程序不同分为:根本法和普通法。 按法的空间效力、时间效力或对人的效力分为:一般法和特别法。 按法的内容分为:实体法和程序法。 按法的主体、调整对象和渊源分为:国际法和国内法。 按法律运用的目的分为:公法和私法。 按法的创制方式和发布形式分为:成文法和不成文法。https://www.dongao.com/cjks/jjfjc/202201133636939.shtml
3.2013年法律硕士法理学必备复习资料六考研法硕资料资讯#2、法律部门划分的标准与原则★ 一、法律部门的概念: 二、我过法律部门划分的标准:调整对象、调整方式★ 三、法律部门划分的原则:五大原则(可出简答)P40★ #3、当代中国法律体系的部门法结构(了解) #4、法的分类 一、法的一般分类(简答)★ 五种分类(记) 二、法的特殊分类https://m.koolearn.com/kaoyan/793272.html
4.法的分类标准和类别这是按照法律效力范围所作的分类。从空间效力看,适用于特定地区的法律为特殊法,适用于全国的法律为一般法。从时间效力看,适用于非常时期的法律(如紧急戒严法、战时实施的法律)为特殊法,适用于平时的法律为一般法。从对人的效力看,适用于特定公民的法律(如兵役法、未成年人保护法)为特殊法,适用于全国公民的为一般https://www.safehoo.com/item/24269.aspx
5.注安安全生产法律法规考点:法的分类复习资料中级安全工程师5.一般法与特殊法 这是按照法的效力范围的不同所做的分类。一般法是指在一国范围内,对一般的人和事有效的法。特殊法是指在一国的特定地区、特定期间或对特定事件、特定公民有效的法。一般情况下,在同一领域,法律适用遵循特殊法优于一般法的原则。 https://www.jianshe99.com/anquan/bkzl/wa20200826150432.shtml
6.2002年法律硕士专业学位研究生联考考试大纲法理学新浪教育第四节法的分类 一、法的分类概述 法律分类的目的。 二、法的一般分类 成文法和不成文法;实体法和程序法;根本法和普通法;一般法和持别法;国内法和国际法。 三、法的特殊分类 公法和私法;普通法和衡平法;联邦法和联邦成员法。 第七章法律关系 https://edu.sina.com.cn/l/2001-09-24/16437.html
7.中国政法大学考研法理核心笔记法学法律笔记三、 法的特殊分类 (一) 公法和私法 (二) 普通法和衡平法 (三) 联邦法和联邦成员法 ⊙特别提示:明确掌握各种法的分类的标准,每年必从中出一题。 第四章 法的效力 第一节 法的效力概述 一、 法的效力的意义 二、 法的效力的概念 注意区分广义的法的效力---规范性法律文件,还是非规范性法律文件都有法http://www.freekaoyan.com/note/faxue/2019/03-13/1552459477382348.shtml
8.2021辽宁护理:特殊饮食分类知多少特殊饮食分类知多少 临床上对于病情危重、存在消化道功能障碍、不能经口或不愿经口进食的病人,为保证营养素的摄取、消化、吸收,维持细胞的代谢,保持组织器官的结构与功能,调控免疫、内分泌等功能并修复组织,促进康复,常根据病人的不同情况采用不同的特殊饮食护理,包括胃肠内营养和胃肠外营养。今天小编就简单地为大家https://ln.yixue99.com/2021/0518/25184.html
9.安全生产法的分类中级安全工程师在同一层级的安全生产立法对同一类问题的法律适用上,特殊法优于普通法。 3.综合性法和单行法 综合性法与单行法的区分是相对的。例如,在安全生产法律体系中,《安全生产法》、《矿山安全法》、《煤矿安全监察条例》三者比较,靠前的相对于靠后的是综合性法,靠后的相对于靠前的是单行法。https://www.233.com/aq/law/fudao/20080123/132611716.html
10.手机百度输入法打特殊符号的方法手机百度输入法打特殊符号的方法 手机百度输入法上打特殊符号: 1.在手机百度输入法下,点击【符号】; 手机百度输入法 2.滑动左侧分类; 手机百度输入法 3.可找到各类特殊符号; 手机百度输入法 4.点击需要的符号即可打出! 手机百度输入法https://m.onlinedown.net/article/10001866.htm
11.特殊工种工龄折算都有哪些种类律师普法特殊工种工龄折算都有哪些种类 《国务院关于工人退休、退职的暂行办法》第一条全民所有制企业、事业单位和党政机关、群众团体的工人,符合下列条件之一的,应该退休。(一)男年满六十周岁,女年满五十周岁,连续工龄满十年的。(二)从事井下、高空、高温、特别繁重体力劳动或者其他有害身体健康的工作,男年满五十五周岁、女https://www.110ask.com/tuwen/12957797898230512064.html
12.老年性口干中医4型治疗法口干老年性口干 中医4型治疗法 很多人觉得口干就是口干,没有什么特殊的分类,其实如果你是这样的想法的话那就错了,口干也是分为几种的,每种口干具有其特定的治疗方法,下面小编就来给大家介绍一下不同的口干都要进行怎样的治疗。 阴虚火旺型 表现为口渴且饮水量多,失眠多梦,大便干燥,小便黄,手足心热,脉细数,舌红https://tag.120ask.com/zhengzhuang/kougan/162068.html
13.下列关于法的分类和效力的说法,错误的是()。下列关于法的分类和效力的说法,错误的是()。 A. 按照法的创立和表现形式的不同,可以将法律分为成文法和不成文法 B. 按照法律效力范围所作的分类,可以将法律分为特殊法和一般法 C. 按照法律规定的内容不同,可以将法律分为实体法和程序法 D. 地方性法规的法律地位和法律效力低于宪法、法律、行政法规、https://www.shuashuati.com/ti/e9119e442b0240c98c33643e26d03f55.html?fm=bdbds8754be2ec78fe74f2f3c01b40280ae03
14.词语的分类和语法功能(全文)在朱德熙先生的语法理论的指导下, 北大计算语言学研究所与中文系合作, 经过几年的研究, 提出了一个服务于语言信息处理的现代汉语词语分类体系, 并将五万多条的词语实际进行了归类, 与此同时还按类详细描述了每个词语的多种语法属性, 初步建成了“现代汉语语法信息词典”, 另外对数十万字的语料进行了切分和词性标注https://www.99xueshu.com/w/tkw2udtkp8zy.html