王莹算法侵害类型化研究与法律应对——以《个人信息保护法》为基点的算法规制扩展构想

作者简介:王莹,中国人民大学法学院副教授,中国人民大学未来法治研究院副院长

摘要

算法的普遍应用给个人及社会带来如下类型的侵害:算法标签、算法归化、算法操纵、算法歧视与算法错误。传统部门法分析框架无法对算法侵害进行完全的、有效的规制。GDPR和我国最新通过的《个人信息保护法》提供了源头数据规制与数据赋权制衡的应对方略,不仅规定了数据处理原则、个人数据权利,还专门引入自动决策概念,设置专条进行规制,形成了从部门法到数据法的算法初步规制框架。但我国《个人信息保护法》的个人数据保护和个人赋权制衡的进路过于狭隘,难以对系统性的、多维的算法侵害及算法自动决策进行全面、系统的规制,故有必要对《个人信息保护法》第24条自动决策条款进行扩展,引入人工干预权,进一步丰富数据权利束,并超越个人数据权利思维,从算法侵害风险防御视角出发,进行整体性的、纵向的、动态的算法规制,积极探索算法可解释性、可问责性的解决方案,加强算法责任研究,沟通算法事前规制与事后规制,并形成二者的闭环,以应对算法社会普遍存在的算法侵害风险。

关键词

算法侵害;数据与个人信息保护;算法可解释性;算法可问责性;算法影响力评估

在人工智能时代,算法利用人类活动日益数字化所积累的海量数据,不断扩展其应用场景的广度与深度,企业和公共机构广泛应用算法决策来决定是否向个人提供商品、服务、工作岗位或公共产品,司法机关在算法决策的辅助下进行司法裁量。对算法技术风险的担忧与对算法可信赖性、可解释性、可问责性的探讨逐渐成为全球性的重要公共议题。我国法学界近年来围绕大数据杀熟、算法歧视、算法黑箱、算法共谋等算法决策法律问题展开探讨,《电子商务法》《消费者权益保护法》等也相继从立法层面作出回应。2021年8月20日通过的《个人信息保护法》(下文简称《个保法》)不仅规定了数据处理原则、个人数据权利,还专门引入自动决策概念(第69条),设置专条进行规制(第24条),形成了从部门法到数据法的算法初步规制框架。本文尝试结合人工智能算法技术特征与既有法律框架资源对算法风险或侵害进行类型化界定,探讨将算法侵害纳入现有的部门法框架进而运用既有法律资源进行应对的可能性,分析欧盟《一般数据保护条例》(GeneralDataProtectionRegulation)(下文简称GDPR)与我国《个保法》对算法侵害的数据法规制路径,并在此基础上提出应对算法侵害的算法规制扩展思路。

一、算法侵害的类型性分析

由数据驱动和算法自动决策的(消费或知识)信息推荐或推送、针对个人的商业和刑事风险评估、公共机会配给、智能家电服务在给人们带来效率、便捷的同时,也隐含着诸多不确定性与问题,在客观、高效、便捷的表象之后,隐藏着人的脆弱性与被操纵性。耶鲁大学的Balkin教授首次从法学角度审视了算法社会造成的深刻影响,对算法所形塑的法律关系及所带来的侵害进行了系统论述。具体而言,人类已从网络时代进入算法社会,所谓算法社会,即围绕通过算法、机器人和人工智能代理进行社会与经济方面的自动决策与决策执行而组织建构的社会。从个别公司或决策者的角度来看,算法的普及确实提高了效率,但实际上,算法的普及给个人和群体带来了累积性损害。这些损害是自动决策的副作用,是算法活动的社会成本。Balkin类比侵权法上的公共妨害概念,将算法的普遍应用给公众增加的社会成本称为算法妨害(algorithmicnuisance)。所谓算法妨害,是指算法的大数据分类、风险评估技术的大规模使用给个人的身份、声誉及行为带来的消极影响。具体而言,算法妨害的副作用包括以下侵害(Harm):

一是声誉侵害。算法结合个人历史数据对个人进行风险评估与分类,根据算法应用的不同场景,把个人划归进不同的风险群体,例如,具有财务风险、雇佣风险、犯罪风险、浪费社会福利风险、不良消费者风险等的群体。被标识于个人的风险在数字时代就成为个人的污点,给个人造成声誉损害。

二是歧视。基于风险评估与归类,算法会对具有风险的个体进行差别化对待,例如不提供利益(如职位或信贷),或增加成本(如增加监控、提高消费价格等)。

三是归化(regimentationornormalization)。算法风险评估与归类增加了人们对自己的身份信息被搜集、处理的担忧,促使人们改变、规范自己的行为,例如,人们会减少在数字世界的行为轨迹,以避免被监控或划归进风险群体。虽然人们减少自身的数字暴露能够降低算法社会的总成本,但这可能导致社会的编制化(regimentation)、统一化,限制个体行动自由,遏制个性表达,致使那些减少数字暴露的人们被社会孤立。这些限制或影响并非都是不可接受的,但至少需要对这些限制或负面影响予以正当化说明。

四是操纵(manipulation)。算法运营者可能利用算法发现哪些群体易于受到算法操控,进而引导人们作出有利于算法运营者的选择,但不给予人们相应的回报。政府可能在行政程序中推广算法决策以限缩公民权利,导致公民尊严受损。私人公司可能利用算法影响消费者,损害消费者的意思自治,基于消费者的隐藏偏好开发的产品搜索可能以不利于消费者的方式使用消费者的偏好,构成对数字市场的操纵。

五是缺乏透明性、可问责性、监管及正当程序。鉴于算法技术的复杂性、专业性、隐蔽性,外行人很难理解算法决策的机制。在作出针对个人的决策时,无论是作出关于具体行政行为的决策,还是作出关于司法裁判行为的决策,在法律上都需要设置合理的程序。算法进行自动决策,同样可能涉及对个人或集体的财产、人身权益的减损、增加或再分配,然而缺乏物理世界中决策程序的那种程序性保障。

Balkin以鸟瞰算法社会的视角对算法侵害所作出的观察是深刻且极具启发性的,为我们研究算法法律问题提供了关键的切入点。以上述研究为基础,笔者结合人工智能算法决策的技术特征对算法侵害进行整合与分类,将人工智能算法决策所带来的消极影响或者侵害作如下分类:

一是算法标签侵害。算法利用大数据对个人进行风险评估与分类,将人们归入不同的风险群体,形成身份标签,并将这种身份标签在数字世界留存、流转、再利用,从而将身份标签固化为数字时代的个人身份污点,Balkin将之称为算法的声誉损害。但这些风险标签并不被用于传统的人际交流沟通,不同于线下的社会人际交往中的社会评价,除了算法使用者知悉外,其他社会成员无从知悉,因而不属于侵权法中的名誉权侵权。但是这种风险标签一旦被贴到个人身上,就会在数字世界流转,被其它算法处理和分析,对个人造成永久不利影响。即便算法标签是由设计合理的算法规则经正确分析得出的数据所作出的决策结论,在算法时代也呈现放大效应,甚至可能导致对个人的权利与机会的永久性剥夺。为了区别于传统法律中的名誉权侵害,也为了还原侵害产生的技术过程,我们将这种侵害称为算法标签侵害,即算法利用历史数据及算法模型对个人进行风险评估与归类,并将个人标签化为“具有某种风险”。

二是算法归化侵害。算法风险评估与归类促使人们改变、规范自己在数字世界与算法社会的行为模式,降低暴露于算法搜集、分析环境的机会,或者使自己在算法面前“看起来”正常。无论是社会的编制化、统一化,还是社会孤立,都必须有合理的理由才能被正当化。例如,实施大规模算法监控与恐怖分子识别,必须以实现社会风险防御目的为必要,否则,就构成对个人行动自由的过度干预。

三是算法操纵侵害。算法利用其所搜集或者汇聚到的用户数据形成巨大的信息优势,向用户推送信息,影响用户的选择与决策,实现对个人和群体的操纵。例如,算法可能试图影响用户的政治观点或者商业选择,侵害个人或者群体的信息自我决定权,最终造成社群沟通鸿沟。

四是算法歧视侵害。鉴于数据与算法设计都无法做到客观中立,所以它们反映了收集者或设计者的某种主观性或偏见,决策结论可能也带有偏见,并由此导致对决策对象或他人的损害。

五是算法错误侵害。除以上几种算法侵害之外,Balkin还附带提及了物理损害,即自动驾驶或工厂机器人算法决策所导致的对人员身体上的伤害。这种算法侵害主要是由数据收集、数据准备、算法规制设计、算法模型验证过程中的缺陷或错误所导致的,例如,因训练数据不充分、不具有代表性,算法种类选择不当,算法设计编码错误等,导致算法决策结论错误。算法错误在自动驾驶或生产线等物联网环境下结合执行模块,既可能直接导致物理侵害,也可能如其他算法侵害一样,单纯导致不当剥夺机会、增加成本等侵害。

二、应对算法侵害的传统法律框架

场景式部门法规制路径

算法标签、算法归化、算法操纵等新型的算法社会的侵害相比于传统物理社会中的侵害而言是新型的侵害,在现行法律制度内,并非能够穷尽既有法律资源以找到法律应对措施。因此,有必要将上述算法侵害概念纳入现行法律规制框架,以审查在现有法律框架内是否存在规制漏洞,以及现有法律资源是否能够提供妥当的解决方案,并据此探讨是否需要以及如何对现有法律规制框架进行调整及扩展。

算法借助强大的数据搜集能力、数据挖掘能力、风险评估能力与精准预测能力,不断扩展应用场景,针对这些应用场景中算法所侵害的利益的种类与涉及的社会关系类型,传统法律提供了不同的部门法解决方案。

(一)算法操纵

算法操纵侵害主要体现于“算法共谋”“信息茧房”及精准营销等方面,平台利用数据优势影响用户的自由选择,干预其观念、意志的形成,对个人或群体进行支配或操纵。算法共谋是指,同一市场中两个或两个以上的经营者,利用算法所实施的协调价格、限制产量等排除、限制市场竞争的行为,实际上属于对数字市场的算法操纵。虽然算法共谋具有违反反垄断法之嫌,但鉴于算法的技术性、智能化、隐蔽性,欲在传统的反垄断法框架内证明共谋意思联络及搜集价格共谋证据,尚存在较大技术障碍,易陷入规制困境。鉴于此,2021年2月7日发布的《国务院反垄断委员会关于平台经济领域的反垄断指南》(下文简称《反垄断指南》)在垄断协议认定中引入了对平台基于大数据和算法所实施的协同行为的审查。

(二)算法歧视

(三)算法错误

算法错误损害个人利益,可被纳入刑法或者侵权法提供的生命权、健康权或财产权保护法律框架进行规制。虽然在侵害的权利类型上不存在法律真空与规制空白,但算法侵害这些传统权利的方式与机制是全新的。

首先,鉴于人工智能算法决策行为的技术复杂性,在侵害后果发生时,对因果关系、主观过错的认定与证明是一个非常棘手的问题。其次,由于算法决策部分甚或全部地替代人的决策行为,因而产生了归责难题与人机责任的界限混淆等问题。例如,自动驾驶L3级别驾驶权切换时的责任区分就引发了学界的广泛争议。再次,传统上这些权利在被人或物侵害时,侵权法或刑法根据权益内容、重要性程度、侵害频度与方式逐渐发展出了清晰的权利界定及侵害认定的框架。但是,人工智能自动决策系统对传统权益的侵害往往很难为侵权法上的侵权责任构成要件或者刑法上的犯罪构成要件所包摄,形成了权利救济与保护的裂缝。例如,2020年7月,美国密歇根州总检察长驳回了一个针对失业保险诈骗探测AI系统算法错误的损失赔偿请求,认为受算法侵害的人应当获得补偿,但诉讼并不是确定该损失赔偿的合适渠道。

(四)算法标签、算法归化

算法结合个人历史数据对个人进行风险评估与分类,根据算法应用场景的不同,可能把个人划归进不同的风险群体,贴上诸如“财务风险”“雇佣风险”“犯罪风险”等不同的风险标签。如上所述,这些风险标签不同于线下社会人际交往中的社会评价,算法标签无法构成侵权法中的名誉权侵害,但对个人的风险分类会增加个人在电子世界中的脆弱性,导致个人权益可能被进一步侵害。例如,美国国会商业、科学和运输委员会的一份大数据交易行业报告揭示,数据画像将消费者划分为“农村的勉强度日者”“二线城市的少数族裔挣扎者”“艰难的开始:单亲父亲或母亲”,根据经济脆弱程度对消费者进行评分,这些数据经常未经消费者允许就被数据掮客出售给金融公司,金融公司再向消费者推销小额贷或高利贷等其它非传统金融产品。而且,这种个人电子身份标签在算法社会固化、存档、流通,其侵害具有隐蔽性、长期性和涟漪放大效应,对个人的负面影响不可小觑。

通过对算法侵害类型进行部门法场景化分析,我们发现,现行法律框架可以将算法歧视、算法操纵、算法错误等纳入电子商务法、反不正当竞争法、侵权法的框架加以规制与救济,但对于算法标签与算法归化,则不存在对应的法律资源与解决方案。

三、算法侵害的数据法规制路径分析

(一)数据处理的一般原则:源头数据规制路径

GDPR引入关于个人数据处理的合法、公正和透明性原则,目的限制原则,数据最小化原则,准确性原则,限期保存原则,完整性与保密原则这六项原则,从源头端对算法对个人数据的处理进行规制。

1.合法、公正和透明性原则〔GDPR第5条1(a)〕

算法自动决策对个人数据的处理须符合该原则的要求,做到合法、公正、透明。例如,在对经济状况不佳的消费者进行风险归类并向其推销不合理的高风险金融产品时,即使获得了数据主体的同意或符合第6条所规定的其它合法性要求,这种数据处理也因可能导致消费者接受不合理的高风险金融产品而违反公正性原则。可见,数据处理的合法、公正和透明性原则能够从数据合规角度防治此类算法侵害。

2.目的限制原则、数据最小化原则〔GDPR第5条1(b)(c)〕

3.准确性原则〔GDPR第5条1(d)〕

准确性原则要求个人数据应当是准确的,如有必要,须及时更新,且必须采取所有步骤,以保证不准确的个人数据能够被删除或及时得到更正。根据欧盟《第29条工作组个人自动决策指南》(下文简称“第29条工作组指南”),数据控制者需要考虑数据画像全流程的正确性问题,包括以下阶段的正确性,即数据收集、数据分析、建立个人数据画像以及适用数据画像作出影响个人的决策。如果在自动决策或画像过程中所使用的数据发生错误,那么,所得出的任何决策及画像都将是有缺陷的。例如,基于过期的数据或者基于对外部数据的错误解析而作出决策,会导致对个人健康、信用或保险风险的错误预测或陈述。即使原始数据记录正确,数据组也可能因欠缺代表性或者分析逻辑而包含隐藏的偏见。数据控制者有必要采取稳固措施来验证和确保那些被再利用与间接获取的数据的正确性与时效性。准确性原则能够保证算法所处理的数据(包括训练数据与真实数据)的真实性与准确性,降低算法侵害的可能性。

4.限期保存原则〔GDPR第5条1(e)〕

机器学习算法被用来处理大量信息,通过信息处理,在信息之间建立关联,以进行综合性的、私密的个人画像,因此,数据控制者往往倾向于搜集大量数据并长期保存,以便于进行算法学习。GDPR的数据最小化原则与限期保存原则将数据画像等自动化处理对个人的消极影响降至最低,能够避免个人数据被超期保存或永久存档,避免个人数据被算法反复处理、分析,被用于不同的风险评估,形成电子身份印记并被算法放大,最终减少算法标签等算法侵害。

5.完整性与保密原则〔GDPR第5条1(f)〕

(二)数据赋权:个人数据赋权的规制路径

1.免于/反对完全自动决策的权利

GDPR序言第71条规定,“数据主体应有免于受制于自动化处理手段对其个人进行精准评价,以及对其产生法律效果或重要影响的情况……在任何情况下,这些数据处理应当有适当的保障措施,包括获得人为干预、表达观点、对评估后作出决策的解释权利以及对决策质疑的权利”。尽管立法序言条款仅具有辅助阐述条款含义的目的,并不具有被直接适用的效力,但与该条相呼应,正文第13条、第14条、第15条也规定了数据主体在第22条(1)、(4)规定的情形下具有获知自动决策通知、自动决策涉及的逻辑、自动化处理的重要性及后续影响的权利。尽管不乏争议,但学界多数意见仍认为,上述规定创立了对算法的解释权或准解释权。

(1)第13条和第14条规定的知情权

第13条和第14条规定了数据控制者在收集信息和获取个人数据时应当履行的事前通知义务,这可为数据主体知悉数据收集目的等信息奠定制度基础。具体而言,第13(1)(c)条和第14(1)(c)条要求控制者在收集信息时应向数据主体提供关于个人信息处理目的以及法律基础的信息。第13(2)(f)条和第14(2)(g)条规定,控制者在获取个人数据时,应向数据主体告知自动化处理所涉及的逻辑以及该种数据处理对数据主体的重要性和可能产生的后果。

第29条工作组指南指出,机器学习的不断发展与复杂性已使理解自动决策的过程或画像工作变得更加困难,故而数据控制者需要寻找简单方法来告知数据主体决策背后的推理机制或作出决策的依据。GDPR要求数据控制者向数据主体提供关于算法逻辑的有意义的信息,这并不是要求数据控制者一定要向数据主体提供关于算法的复杂解释或者揭示整个算法,而是要求数据控制者提供足够的供数据主体理解决策理由的信息。

(2)第15条规定的访问权

总体视之,GDPR引入诸数据处理原则,对于控制数据质量,从源头端防治算法错误、算法歧视、算法标签等算法侵害无疑具有重要意义,但也存在以下局限性:

其一,存在权利行使效果有效性的问题。鉴于算法处理数据的规模及算法黑箱,个人数据权利的行使效果存疑。具体而言,与传统物理社会中权利的行使不同,在人工智能时代,人们对数字权利的行使存在信息与技术门槛。面对海量的数据处理与算法黑箱,个人往往很难行使访问权、质疑权或反对权,“个体很难知晓其个人数据是否被处理,其个人数据何时被处理,被哪个数据处理者处理”。

其二,存在个人数据思维局限性的问题。以保护个人数据为宗旨的GDPR囿于个人数据的思维路径,具有算法规制及应对算法侵害的局限性。GDPR仅适用于利用个人数据的算法自动决策,如果算法系统处理的数据是非个人数据,则不受GDPR的规制,由此产生的算法侵害,并无对应的防治渠道。

四、算法侵害应对方案的本土化构建

我国最新通过的《个保法》借鉴了GDPR的源头数据规制与数据赋权制衡的应对方略,形成了从部门法到数据法的算法初步规制框架,下文以此为基础,提出我国算法侵害应对与算法规制的扩展思维路径。

(一)搭建算法规制的数据法基础框架:算法规制的起点

2016年《网络安全法》第41条规定,网络运营者收集、使用个人信息,应当遵循合法、正当、必要、公开透明、知情同意等原则,首次从网络运营者的网络信息安全责任角度引入了关于个人信息处理的基本法律规范。《个保法》也规定了合法、正当、必要、诚信、明确、合理、最小化、公开透明、准确等原则。《个保法》第四章引入了数据权利,规定个人就对其个人信息的处理享有知情权与决定权、查阅复制权、可携带权、更正补充权、删除权、解释说明权等。我国逐步从网络信息安全责任、个人信息控制者义务、个人信息主体权利角度引入GDPR规定的个人数据处理原则与数据主体权利,形成了个人信息保护的基本框架,构筑起我国算法规制与算法侵害防治的起点。

与GDPR第22条相较,我国的自动决策条款具有以下特点:

GDPR对“特殊类型个人数据”的处理采用一般性禁止加允许例外情形的方式,对完全自动决策更是严格禁止,除非在存在明确同意、为实现实质性公共利益所必要并且提供特定保护措施等情形下,一般不能适用第22条第2款所规定的免于完全自动决策的例外。而《个保法》对于敏感个人信息则采取一般性允许加特殊限制的方式,仅要求在处理敏感个人信息时,须具有特定的目的和充分的必要性,须取得单独同意,须告知处理必要性和对个人产生的影响,且须进行事前风险评估,此外,并未设定专门针对自动决策的限制。但将种族、民族、宗教信仰、个人生物特征、医疗健康信息等敏感信息作为输入数据进行算法决策,具有高风险性,极易引起算法标签、算法歧视及算法操纵等算法侵害,给个人及社会带来深远的不利影响,值得重视。

2.自动决策对象(个人信息主体)与决策主体(信息处理者)的权利范围不同

(1)解释权

或许是立法者考虑到算法解释的技术开放性与解释类型尚未定型,故而留白,《个保法》关于解释权的规定稍显简单化和形式化。鉴于对复杂机器学习算法中具体决策结论的解释具有极大技术难度,学界就采取何种解释类型(结果型解释、模型中心型解释、主体中心型解释)存在争论,因此,第24条未就向个人说明到何种程度以及如何作出说明作出具体规定。

(2)人工干预权、质疑权、表达观点权

第24条未配置完全自动决策在对个人产生重大影响时的人工干预权、质疑权与表达观点权,在算法程序正当意义上似有欠缺。在对决策对象产生重大影响的算法决策中嵌入类似于听证的程序及人类审核监督程序,防止人类沦为算法决策的客体,对于避免算法操纵、算法归化、算法错误等侵害具有重要意义。如果说质疑权与表达观点权尚能被解释权部分覆盖,那么,人工干预权在《个保法》上则完全阙如。欧盟人工智能高级别专家组于2019年4月发布《可信AI伦理指引》(High-LevelExpertGroupEthnicGuidelinesonTrustworthyAI),提出了实现可信AI的七个基本要求:人类施为与监督、技术鲁棒性与安全、隐私与数据治理、透明性、多样性非歧视与公平性、社会体制与环境福祉、可问责性。在首当其冲的人类施为与监督(HumanAgencyandOversight)这一要求中,“人类施为”要求人类必须被给与足够的理解AI系统或与其互动的知识工具,且在可能时得以对系统进行合理的评估或质疑。AI系统须为个人作出符合个人目的的、更好的、更全面的选择提供支持。“监督”则提倡人类对AI系统采取干预与治理措施,防止AI系统损害人类的自我决定权或产生其它负面后果。

这在我国早期智能投顾监管中已有所体现。2018年发布的《关于规范金融机构资产管理业务的指导意见》(银发〔2018〕106号)第23条规定:“金融机构应当根据不同产品投资策略研发对应的人工智能算法或者程序化交易,避免算法同质化加剧投资行为的顺周期性,并针对由此可能引发的市场波动风险制定应对预案。因算法同质化、编程设计错误、对数据利用深度不够等人工智能算法模型缺陷或者系统异常,导致羊群效应、影响金融市场稳定运行的,金融机构应当及时采取人工干预措施,强制调整或者终止人工智能业务。”

基于机器学习算法中人工干预问题在技术上的开放性与难度,亦有学者对GDPR第22条规定人工干预权提出质疑。但是,一方面,机器学习算法的自动决策往往是辅助性的,因而不属于完全自动决策,另一方面,即使是对于完全自动决策的机器学习算法而言,人工干预也并非要求人类进行完全的支配,而是应在程序上具有一种介入或审查的可能性,算法设计者或应用者有义务对实现这种可能性进行技术与资源投入,尤其是对那些对个人具有法律影响或其它类似重大影响的自动决策应用而言。

我国个人信息保护立法在借鉴GDPR的基础上已初步形成了源头数据规制与数据权利制衡的算法侵害防治法律框架,但在完全自动决策场合,仍有必要进一步丰富数据权利束,在未来的法律修订中进行合理的人工干预权设置。一方面,应赋予人类介入与审查的可能性,并制定具有可操作性的权利行使机制。例如,第29条工作组指南要求数据控制者必须确保决策过程的干预具有实质性监督意义,应当由具有权限和能力改变决策结果的人执行决策干预,必须在数据保护影响评估报告中识别、记录人工干预的程度及发生阶段,以避免数据控制者故意通过设置形式化的人工介入来规避本条的适用。另一方面,也需在科技创新与算法侵害防治之间寻求衡平,为此,可以将人工干预权触发的条件适当提高。例如,只有当完全自动决策可能对生命、健康、安全等重大法益产生影响时,方可进行人工干预。

(二)促进数据保护思维向算法规制思维扩展

GDPR关于目的限制原则、访问权、免于完全自动决策权、数据保护影响评估等的规定为人工智能系统处理数据提供了关键的制度保障措施,对此,需要在人工智能算法的背景下予以动态解读。微软研究院首席研究员KateCrawford和Google开放研究创始人MeredithWhittaker联合创立的知名跨学科人工智能研究机构AINowInstitute作出如下论断:“从长期来看,数据保护框架因从对隐私与侵害的个人化而非集体化的理解出发而作茧自缚,无法应对算法贻害无穷的应用。AI系统往往利用故意选择的非个人数据类型对与人群或其所属的社区进行敏感的推断,此时个人数据门槛的保护作用就失灵了。”

因此,GDPR与我国现有的个人信息保护立法中的个人数据规制思维及个人赋权解决方案无法彻底解决算法侵害防治与算法规制问题。欲全面、系统地防治算法侵害,就需要转变数据保护思维模式,将目光从数据源头拓展到算法自动决策过程,需要结合算法自动决策的技术特征实现从静态规制到动态、全流程规制的转变。2017年国务院发布的《新一代人工智能发展规划》(国发〔2017〕35号)提出,应建立健全公开透明的人工智能监管体系,实行设计问责和应用监督并重的双层监管结构,实现对人工智能算法设计、产品开发和成果应用等的全流程监管。欧盟人工智能高级别专家组在《可信AI伦理指引》中也强调,鉴于AI系统运行于动态环境中且不断演进,对人类施为与监督、技术鲁棒性与安全、隐私与数据治理等实现可信AI的七个基本要求的执行及评估也必须被贯穿于AI系统的全生命周期,并对执行中的变化进行记录及说明。应在算法设计及应用的全过程吸纳算法决策利益攸关方的不同观点与考量,这有利于对侵害及新问题作出快速回应。

在机器学习算法日益成为主流算法的人工智能技术发展趋势下,算法决策不再是简单的从数据输入到数据输出的线性逻辑推理过程,而是包括数据标记、特征提取、模型训练与调优、算法迭代、模型验证、误差分析、模型融合、回归等步骤的动态的迭代过程。如果仅针对算法自动决策源头的底层数据或个人信息行使更正权,不触及算法决策模型的逻辑错误或整个机器学习算法步骤中的瑕疵,就无法保障决策结论的正确性。例如,在包含自动驾驶系统的自动驾驶车辆准入方面,工业和信息化部于2021年5月8日发布《智能网联汽车生产企业及产品准入管理指南(试行)》(征求意见稿),规定了智能网联汽车产品准入过程保障要求,包括整车尤其是驾驶自动化系统的功能安全过程保障要求、驾驶自动化系统预期功能安全过程保障要求和网络安全过程保障要求,这体现了自动驾驶汽车等人工智能产品在准入层面的算法规制动态性与全流程特征,能够最大限度地降低算法错误的发生概率。

(三)事前规制与事后规制的沟通:建立算法问责制度框架

合法、公正和透明性原则等数据处理原则与访问权、更正权、删除权等数据权利保证了数据的正确性、公正性,与算法影响评估制度一同发挥着事前规制功能与避免产生算法侵害的功能,而在算法侵害产生后,通过因果关系和过错认定进行责任追究,则属事后规制,事前规制与事后规制并行,方能形成算法侵害防治与算法规制的闭环。

1.算法归责困境

算法黑箱带来的关于算法因果关系与过错的认定难题,给传统侵权责任与刑事责任的适用设置了障碍,与事前规制相比,对事后规制的研究与实践在世界范围内均处于早期阶段,呈现出事前规制与事后规制失衡、脱节的特点。

2.算法可问责性及其意义

IEEE《自动智能系统伦理全球倡议》(GlobalInitiativeonEthicsofAutonomousandIntelligentSystems)将算法可问责性原则(Accountability)作为一项重要的伦理原则,要求在算法应用引起侵害或负面后果时应能向算法开发者、使用者追责。GDPR第5条第2款引入可问责性原则,要求控制者对遵守第1款所规定的数据处理原则承担合规责任并对此提供证明,并尝试通过自动决策条款及解释权、访问权等条款建立一套算法问责机制。GDPR第5条也并未将可问责性界定为关于某种具体权利侵害结果的结果责任,而是将之界定为违反数据处理原则的合规责任。可见,不同于传统的责任制度,可问责性制度更类似于一种沟通事前规制与事后规制视阈的制度性工具。

然而,GDPR与我国《个保法》所规定的均是数据保护框架下的风险评估,即数据保护影响力评估,而非算法影响力评估,与算法影响力评估相比,数据保护影响力评估的缺陷主要在于:

其一,对技术正当程序的考量不足。GDPR与我国《个保法》皆不强制要求评估程序必须是外部的或必须引入中立的第三方,未从实定法层面明确外部机构介入评估的必要性,这使得评估的中立性与效果存疑。但算法影响力评估则试图搭建一个联合内部与外部的、联合专业机构与公众的、具有实践性的问责框架,以促进专业人士与公众对算法的民主参与。若纳入外部问责和审计力量,则更能满足技术正当程序的要求,更能展现更完善的协同治理架构。

THE END
1.法与法律完全相同对还是错法与法律完全相同对还是错 2021-12-22 其他 法与法律完全相同错. 法的本意并不指法律,比如方法,办法词汇中的法.国家法律只是社会语言发展到一定阶段后产生的引申意义. 法律是由国家制定或认可并以国家强制力保证实施的,反映由特定物质生活条件所决定的统治阶级意志的规范体系.法律是统治阶级意志的体现. 法与法律https://lvlin.baidu.com/question/1647446944625940700.html
2.一个时代的终结——从最高院推翻罗伊诉韦德(Roev.Wade)论美国只要是语言文字,就有可能产生歧义。宪法也不例外。由于一些宪法法条具有模糊性。不明确的法律在被应用到个案时就需要法官对其进行解释,即释法。不同的法官可能持有不同的释法理念、法哲学思想,以及不同的个人信仰。这三点相互作用,决定了不同法官在面对同样的案例和相同的法律时,可能得出完全不同的结论。 https://cj.sina.com.cn/articles/view/5044281310/12ca99fde02001uivy
3.FLKC法律快餐农村实用法律知识百问为了加强农村法制宣传教育,切实提高农民群众法律意识,服务农村改革发展大局,营造经济社会发展的良好环境,省委依法治省工作领导小组办公室根据《司法部关于开展加强农村法制宣传教育,服务农村改革发展》主题宣传活动的要求,组织力量收集整理编印了这本《法律快餐——农村实用法律知识百问》,力求简明扼要、通俗易懂、贴近实际,http://sft.shaanxi.gov.cn/zt/ncsyflzsbw/15970.htm
4.我国古代法律文化主要内容特点及影响一、我国古代法律文化的主要内容 (一)共同的法的理念,略不相同到逐步会通的法律思想 所谓理念,是人们对事物从感性认识到理性认识,对其应然状态作出的概括。法的理念就是人们对法应该是什么作出的概括。我国古代关于法的理念集中体现在"法"字的形成与理解。中国字是象形文字,以其形表其义。法字古文为"E"。此字http://clsjp.chinalaw.org.cn/portal/article/index/id/228.html
5.《法律与革命——西方法律传统的形成》读书笔记(法律与革命)书评1.教会法与世俗法之间的紧密勾连2.教会法与世俗法的错估与变形 四、结语:经由过去、通向未来的法律之路参考文献一、导论:伯尔曼与《法律与革命》的诞生背景(一)伯尔曼与伯尔曼的法律观1.伯尔曼其人当伯尔曼进入学术岁月的后半个30年时,他的目光从苏联法、国际贸易法与法学教育上移开,转而进入法理学与https://book.douban.com/review/14240887/
6.#软件设计师#软考#高频知识点总结#上午题常考知识点#下午题分析总【McCabe度量法】VG=m-n+2 m:有向弧数。 注意,什么叫有向弧?!!! 程序图是退化的程序流程图。也就是说,把程序流程图的每一个处理符号都退化成一个结点,原来连接不同处理符号的流线变成连接不同结点的有向弧,这样得到的有向图就叫做程序图。 https://blog.csdn.net/qq_45634592/article/details/118700347