植物生理学知识重点

水分代谢(watermetabolism)植物对水分的吸收,水分在植物体内的运输利用以及水分的散失是构成植物水分代谢的不可分割的三个方面。

水分代谢的作用是维持植物体内水分平衡

第一节水在植物生命活动中的重要性

一、水的理化性质

水的很多性质都是由其分子结构决定的。水分子的结构具有如下特点:1.水分子有很强的极性.2.水分子之间通过氢键形成很强的内聚力3.水极容易与其它极性分子结合.

(一)在生理温度下是液体

由于水分子有很强的分子间力(氢键的作用),所以,虽然分子很小(分子量18),但在生理温度下是液体.这对于生命非常重要.

(二)高比热

因为需要很高的能量来破坏氢键,所以,水的比热很高。由于植物体含有大量的水分,所以当环境温度变化较大,植物体吸收或散失较多热能时,植物仍能维持相当恒定的体温(三)高气化热

这同样是由于水分之间的氢键造成的,破坏氢键需要很高的能量。在炎热的夏天植物通过蒸腾作用散失水分,可以降低体温。

(四)高内聚力、粘附力和表面张力

由于水分子间有很强的内聚力可以使木质部导管的水柱在受到很大张力的条件下不致于断裂,保证水分能运到很高的植株顶部。水分子间的亲和力还导致水有很高的表面张力。(五)水是很好的溶剂

由于水分子的极性,它是电解质和极性分子如糖、蛋白质和氨基酸等强有力的溶剂

水分子在细胞壁和细胞膜表面形成水膜,保护分子的结构。

水是代谢反应的参与者(水解、光合等)。水作为许多反应的介质和溶剂,同时由于水的惰性不会轻易干扰其它代谢反应

(二)水分在植物体内的存在状态

1.束缚水与自由水

束缚水(boundwater):靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水

自由水(freewater):距胶粒较远,能自由移动的水分叫自由水。

自由水、束缚水与代谢的关系:

通常以自由水/束缚水的比值作为为衡量植物代谢强弱和植物抗逆性大小的指标之一。

自由水/束缚水比值高,植物代谢强度大;

自由水/束缚水比值低,植物抗逆性强。

三、水对植物的生理生态作用

(一)水是原生质的主要成分

(二)水是许多代谢过程的反应物质

(三)水是生化反应和植物对物质吸收运输的溶剂

(四)水能使植物保持固有姿态

(五)细胞分裂及伸长都需要水分

(六)水对可见光吸收极少

(七)生态效应

第二节植物细胞对水分的吸收

植物细胞吸水主要有三种形式:一种是渗透性吸水,一种是吸胀性吸水。未形成液泡的细胞靠吸胀作用吸水;形成液泡以后,细胞主要靠渗透性吸水。还有第三种吸水方式叫代谢性吸水。

一、植物细胞的渗透性吸水

(一)水势的概念

在植物生理学上,水势(waterpotential)是指每偏摩尔体积水的化学势。在某种水溶液中,溶液的水势等于每偏摩尔体积水的化学势与纯水的化学势差

ψW=

式中,ψW为水势,μW是水溶液的化学势,μoW是纯水的化学势,是水的偏摩尔体积(partialmolarvolume),是指加入1摩尔水使体系的体积发生的变化。水的偏摩尔体积

随不同含水体系而异,与纯水的摩尔体积(VW=18.00cm3/mol)不同。但在稀的溶液中与VW相差很小,实际应用时,往往用VW代替。

溶液的水势

纯水的自由能最大,化学势最高。为了便于比较,人为的规定纯水的化学势为零,那么纯水的水势也为零,其它溶液与纯水相比较。

在溶液中,溶质的颗粒降低了水的自由能,所以,在溶液中水的化学势小于零,为负值。根据水势的定义公式可知,溶液的水势为负值。溶液越浓,水势越低。如海水的水势为-2.5MPa,1mol蔗糖溶液的水势-2.7MPa。

开放溶液中水势的计算

开放溶液中水势称为溶质势或渗透势(ψS),是由于水中溶质的存在而引起的水势降低值。可用下式计算:

ψS=-iCRT

式中:i为等渗系数,与溶质的解离度和一个分子解离产生的离子数目有关。对于非电解质为1。C为摩尔浓度,R为气体常数(0.0821),T为绝对温度。

水势与水分转移的方向

通过上面的分析可知,体系中水分的移动取决于水势的高低。如果体系中没有阻碍水分扩散的障碍,那么水分便会自发地从高水势处向低水势处移动。因此,供应水分的部位与接受水分部位的水势差便是水分运转的动力。

2.水势的单位化学势是能量单位:J/mol,而J=N·m,偏摩尔体积的单位为m3/mol,所以,水势的单位N/m2,即Pa(牛顿/m2)为一压强单位。

(二)渗透作用(osmosis)

扩散:物质分子由高浓度的地方向低浓度的地方均匀分布的现象称为扩散。扩散的动力均来自物质的化学势差(浓度差)

渗透作用:渗透是扩散的特殊形式,即通过选择透性膜的扩散。这种水分通过选择透性膜从高水势处向低水势处移动的现象称为渗透作用。

渗透系统:把选择透性膜以及由它隔开的两侧溶液称为渗透系统。W

WWV-μμWwVμ

(四)植物细胞的水势

典型的植物细胞水势由三部分组成:渗透势ψS,压力势ψP和衬质势ψm。

即:ψW=ψS+ψP+ψm

ψS(osmoticpotential)(又叫溶质势,solutepotential)是由于液泡中溶有各种矿质离子和其它可溶性物质而造成的。

ψP(pressurepotential)是由于外界压力存在而使水势增加的值,它是正值。

细胞的ψm(matricpotential)是由细胞内的亲水胶体对水分的吸附造成的。

衬质势当水分子被亲水物质吸附时,自由能降低,水势也成为负值。由于亲水物质存在而引起的水势降低值,称为衬质势ψm。干种子的水势很低(负值很大)。就是由于大量的亲水物质吸附水分子的缘故

关于压力势细胞的ψP是由于细胞壁对原生质体的压力造成的。当细胞充分吸水后,原生质体膨胀,就会对细胞壁产生一个压力,这个压力称为膨压(turgorpressure)在原生质体对细胞壁产生膨压的同时,细胞壁对原生质体产生一个大小相等方向相反的作用力,这个作用力就是细胞的压力势(pressurepotential)。

细胞的压力势是一种限制水分进入细胞的力量,它能增加细胞的水势,一般为正值。

但当细胞发生质壁分离时,ψP为零。处在强烈蒸发环境中的细胞ψP会成负值。

在强烈的蒸发环境中,细胞壁内已经没有水分了,原生质体便与细胞壁紧密吸附而不分离。所以在原生质收缩时,就会拉着细胞壁一起向内收缩。由于细胞壁的伸缩性有限,所以就会产生一个向外的反作用力,使原生质和液泡处于受张力的状态。这种张力相当于负的压力势,它增加了细胞的吸水力量,相当于降低了细胞的水势。

成熟细胞的水势表示为:ψW=ψS+ψP

(五)细胞间水分的运转

水分进出细胞取决于细胞与其外界的水势差。相邻细胞间的水分移动同样取决于相邻细胞间的水势差。水势高的细胞中的水分向水势低的细胞中移动。

水势高低的不同不仅影响水分移动的方向,而且还影响水分移动的速度。两细胞间水势差越大,水分移动越快,反之则慢。

吸胀力与水势

吸胀力就是一种水势,即衬质势(ψm)。

干种子萌发前的吸水就是靠吸胀作用。

干种子由于没有液泡,ψS=0,ψP=0,所以ψW=ψm。

分生组织中刚形成的幼嫩细胞,主要也是靠吸胀作用吸水。

植物细胞蒸腾时,失水的细胞壁从原生质体中吸水也是靠吸胀作用。

植物细胞水势组成的几种情况(总结)

1.对于成熟的植物细胞,由于ψm为0

ψW=ψS+ψP

2.当成熟的细胞发生初始质壁分离时,ψP为零,但这时ψS还未发生变化,ψW=ψS,这就是用质壁分离法测定细胞渗透势的基本原理。

3.当细胞完全吸水膨胀时,ψW=0,这时ψS=-ψP

4.当细胞在开放的溶液中达到动态平衡时,若外界溶液的水势为ψS’,ψS’=ψS+ψP,ψP=ψS’-ψS

5.处在强烈蒸发环境中的细胞ψP会成负值。

6.没有液泡的细胞,ψP=0,ψS=0,ψW=ψm

第三节植物根系对水分的吸收

根吸水的主要部位主要是在根的尖端,包括根毛区,伸长区和分生区。吸水的部位以根毛区

THE END
1.植物导管运输水分是靠毛细作用还是蒸腾作用?在实践层面,科研人员利用此研究成果,对目标植物精细调整电穿孔参数、缓冲液配方,能大幅减少摸索周期、https://www.zhihu.com/question/399796912/answer/42909958906
2.DFT水培系统有哪些优势?DFT 水培系统中的营养液循环比较容易实现高效的循环,由于种植槽较深,营养液有足够的空间进行流动,通过水泵等动力设备,可以使营养液在种植槽内形成良好的循环,能够高效得对养分进行分布。为了保证植物根系在较深的营养液中能够获得足够的氧气,DFT 系统可以采用多种增氧方式。最常见的是使用气泵向营养液中充入空气https://baijiahao.baidu.com/s?id=1817387630529586356&wfr=spider&for=pc
3.非饱和土壤水流运动及溶质迁移非饱和土渗透扩散例如,土壤水的运动是土壤营养物或(和)污染物运移及热运动的主要驱动力;土壤水分分布状况对于土壤空气状况﹑微生物的活动,植物根系的发展都起到决定性的作用。水资源评价和预报也需要掌握水在土壤和地下水系统中的运动和分布方面的知识。土壤水动力参数影响与控制水及化学物质在土壤、地下水中的运移速度和分布是研究及https://blog.csdn.net/weixin_44259522/article/details/134852443
4.高中生物中涉及的“主要”及解析,你值得拥有!Na+在维持细胞外液渗透压上起决定性作用,K+在维持细胞内液渗透压上起决定性作用。 Fe在植物体内的作用主要是作为某些酶的活化中心,如在合成叶绿素的过程中,有一种酶必须要用Fe离子作为它的活化中心,没有Fe就不能合成叶绿素而导致植物出现失绿症,但发病的部位与缺Mg是不同的,是嫩叶先失绿。 http://www.gaokao.com/e/20180928/5baddee48e053.shtml
5.湖泊水生植物稳定碳同位素分馏机制与应用研究进展1.1 水生植物稳定碳同位素的分馏机制 在光合作用过程中,植物通过吸收CO2与H2O合成有机质,Friend等[4]研究发现在这个过程中植物体内的碳同位素发生了不同程度的分馏:首先,大气中的CO2在向植物气孔扩散过程中会发生同位素分馏,导致植物体内CO2的δ13C较大气中CO2的δ13C低;其次,CO2从细胞间隙进入叶肉细胞时会遇到一定https://www.fx361.com/page/2020/0611/17704430.shtml
6.院校信息2.2 发育生理:生长生理、生殖生理、成熟与衰老生理以及在整个生长发育过程中的生长物质调节作用等。 2.3.植物在逆境条件下的生理反应,即逆境生理等。 第一章 植物的水分代谢 第一节 植物对水分的需要 1. 植物的含水量 2. 植物体内水分的存在状态 3. 水分在植物生命活动中的作用 https://yzst.chsi.com.cn/wap/sch/detail?schId=367894&categoryId=442342&infoId=81515285
7.生物净化水质范文10篇(全文)现代生物技术是一项以微生物及其代谢产物的酶为研究对象的一门综合技术, 包括蛋白质、基因以及细胞工程等。因此, 从主体的角度看, 应用于净化水质污染中的现代生物技术主要体现在两个方面:微生物酶以及微生物自身的分解作用。 2.1 微生物酶解技术 微生物酶解技术就是利用生物体内及代谢产物中的酶的分解作用, 从而达到https://www.99xueshu.com/w/ikey49bmw56k.html
8.7生物地理首先,水是生物有机体的重要组成成分。 其次,生物的一切代谢活动都必须有水为介质,营养物质的吸收和运输、食物的消化、激素的传递以及其他各种生物化学过程都必须在水溶液中进行。 第三,水是植物进行光合作用的重要原料。 第四,水的热容量大,吸热和放热的进程比较缓慢,为水生生物创造了一个稳定的温度环境。 https://zrdlx.aust.edu.cn/info/1034/1056.htm
9.2023河南农业大学339农业知识综合一考研大纲已发!内容:植物对水分的吸收;水分在植物体内的运输;水分的散失;合理灌溉的生理基础。 要求:熟记基本概念,掌握细胞吸水的基本方式,植物根系吸水途径、机理及影响吸水的土壤因素。掌握气孔蒸腾的特点、机理和环境因素的影响。掌握蒸腾拉力―内聚力―张力学说。根据作物的需水规律进行合理灌溉。 https://www.gaodun.com/kaoyan/1458772.html
10.粤教版五年级科学上册全册的教案琪琪发现折断的茎的断口处有水滴出来,那水是哪儿来的呢? 今天,我们就来学习第二课《茎里的“运输网”》(板书课题)。 二、新课 (一)水在植物体内的流动 白花染色实验 在课本上介绍的实验里,我们能在浸泡在红颜色水里的姜花茎的横切面上看到许多小红点。这说明了什么? https://www.unjs.com/jiaoan/qita/20190505114849_2017756.html
11.粤教版五年级科学上册全册教案2.了解茎的一般结构。 3.探究茎的作用。 重点难点:茎的作用 教学过程 一、导入 活动指引 琪琪发现折断的茎的断口处有水滴出来,那水是哪儿来的呢? 今天,我们就来学习第二课《茎里的“运输网”》(板书课题)。 二、新课 (一)水在植物体内的流动https://www.diyifanwen.com/jiaoan/xiaoxuekexuejiaoan/522982.htm
12.盆景技艺大全扣水减肥理应当, 植物体内转机制; 勤查调整树可安。 冬季防寒是主要。 高处放置是首要。 室内越冬见光照; 充分休眠盆景好。 盆景花卉施肥有一套要领 “四多”黃瘦多施,发芽前多施,孕蕾期多施,花后多施。 “四少”肥壮少施,发芽少施,开花少施,雨季少施; https://www.meipian.cn/2f690lit
13.具有较高的研究价值。(1)气孔是植物体内水分散失的“门户随着全球气候变化,水将成为植物生存的限制因素。龙舌兰(如图1)抗旱能力强,具有较高的研究价值。(1)气孔是植物体内水分散失的“门户”。生物小组利用午休时间观察龙舌兰叶表皮,结果如图2所示。图中___(填字母)结构为气孔,绝大多数呈关闭状态,能够减弱___作用,避免水分过多散失。(2)气孔也是气体进出植物体https://mzujuan.xkw.com/6q19067886.html
14.典型挺水植物腐解过程及微生物响应研究挺水植物是水生生态系统的生产者,也是水生生态系统中物质循环和能量流动的重要环节,对水生生态系统结构和功能有重要影响。水生植物腐解会释放氮、磷等营养物质,进而影响到自然水体水质、生态系统的稳定性,甚至湿地的碳素与物质循环等,开展水生植物腐解规律研究对探究自然水体营养物质循环过程具有重要意义。本文以衡水湖两https://wap.cnki.net/lunwen-1023917179.html