数学结构和逻辑结构代数原理拓扑学

计算是封闭的事实结构,算计是开放的价值组合,计算计是开放性封闭的事实价值混合体——编者按

群的概念

如果不从检验数学结构开始,就不可能对结构主义进行批判性的陈述。其所以如此,不仅因为有逻辑上的理由,而且还同思想史本身的演变有关。固然,产生结构主义的初期,在语言学和心理学里起过作用的那种种创造性影响,并不具有数学的性质(索绪尔学说中关于共时性平衡的理论是从经济学上得到启发的;“格式塔”学派的完形论学说则是从物理学上得到启发的),可是当今社会和文化人类学大师列维-斯特劳斯(Levi-Strauss),却是直接从普通代数学里引出他的结构模式来的。

群结构作为代数基础,已经显示出具有非常普遍和非常丰富的内容。几乎在所有的数学领域里,并且在逻辑学里,我们都又发现了群结构。在物理学里,群结构具有基本的重要性;在生物学里,也可能会有一天情况相同。所以,力求明了这种成功的由来是很重要的了。因为群可能被看做是各种“结构”的原型,而且,在某些人们所提出的东西必须加以论证的领域里,当它具备了一些精确的形式时,群能提供最坚实的理由,使人们对其结构主义的未来,抱有希望。

这些理由中的第一条,是数理逻辑的抽象形式;群就是从中引出来的;这抽象形式,就解释了群的使用的普遍性。当有一个性质从客体本身经过抽象被发现出来以后,这个性质当然就向我们提供了这些客体的情况。但是,所抽象出来的性质越是具有普遍性,这个性质就越贫乏而有很少用处的危险,因为它对于一切都能适用。体现数理逻辑思维特点的“反映抽象”(abstractionreflechissante)的性质则不是这样,恰恰相反,它不是从容体里抽象出来的,而是从人们对于客体所加上的动作、并且主要地是从这些动作的最普遍的协调作用(coordination)之中抽象出来的;例如从汇集(reunir)、赋序(ordonner)和找出对应关系(mettreencorrespondance)等等过程里抽象出来。然而人们在群中看到的,正好就是这些有普遍性的协调作用,首先就是:a)回到出发点的可能性(群的逆向运算);b)经由不同途径而达到同一个目的、但到达点不因为所经过的途径不同而改变的这种可能性(群的结合律性质)。至于组合(如汇集等)的本性,可以不受顺序的制约(可互相置换的群),也可以建立在必然的顺序上。

正因为这样,群的结构就成了一个确实有严密逻辑联系的工具,这个工具因内部的调整或自身调节作用而具有自己的逻辑。事实上,这个工具通过其自身的活动,使理性主义的三个基本原理发挥了作用:在转换关系的可逆性中体现了不矛盾原理;中性成分的恒定性保证了同一性原理;最后一个原理人们较少强调,但它同样是一个基本原理,就是到达点不受所经途径不同的影响而保持不变的原理。例如,在空间里位移的一个整体,就是这样(因为,两个连续的位移仍旧是一个位移;因为一个位移能够被逆向的位移或“返回”所抵消,等等)。然而位移群的结合律性质相当于“迂回”的行为,在这一点上,对于空间的一致性来说是基本的。因为,如果到达点因所经途径不同而时常在改变的话,那就会没有空间可言,而只有可与赫拉克利特所谈过的那条江相比拟的永恒流水了。

其次,群是转换作用的基本工具,而且还是合理的转换作用的基本工具。这种转换作用不是一下子同时改变一切,而是每一次转换都与一个不变量联系起来。这样,一个固体在习常空间里位移,就让它的大小保持不变;一个整体被分成为许多部分,就让总和保持不变,等等。只要有了群结构,就完全可以揭露梅耶森(E.Meyerson)用来建立他的科学认识论的那个反命题的人为性质了;按照他的反命题,一切变化都是非理性的,只有同一性才是理性的特点。

母结构

但这还只是一个部分的胜利。在数学界可以称之为结构主义学派的,也就是布尔巴基学派(lesBourbaki)的特征的乃是企图使全部数学服从于结构的观念。

这些基本结构被区分出来并被阐明了特性之后,其它结构就通过两个过程接着产生:或者通过组合的方式,把一些成分的整体,同时放到两个结构中(例子是代数拓扑学);或者通过分化的方式,也就是说,硬性规定某些确定子结构的限制性公设(例子是,用引进直线守恒,接着是平行线守恒,接着是角的守恒,……等的办法,以连续一个接一个嵌套的子群的形式,从同型拓扑群中派生出来的各种几何群)。人们同样还可以从强结构到“比较弱的结构”进行分化,例如,一个结合律性质的“半群”,既没有中性成分,也没有逆成分(自然数>0)。

为了把这些不同方面互相联系起来,为了帮助说明结构的普遍意义可能是什么情况,值得先思考一下:“数学建筑学”(布尔巴基学派用语)的基础,是否具有“自然的”性质,或者只能建立在公设化的形式基础上?这里我们已经可以在“自然数”指正整数的意义上使用“自然(的)”这个术语了;正整数在数学上使用它们之前先已经构成,是用从日常活动里所抽出来的运算构成的,这些运算,如早在原始社会里一对一的物物交换中所使用的、或是儿童玩耍时使用的一一对应的关系,在坎托尔(Cantor)用来建立第一个超穷基数以前,已经使用了几千年了。

人们可以惊奇地看到,儿童在发展过程中最初使用的一些运算,也就是从他加在客体上的动作的普遍协调中直接取得的运算,正好可以分为三大范畴,划分的标准,根据:运算的可逆性来自逆向性,象代数结构一样(在这个儿童的特殊情况下,是分类结构和数的结构);或运算的可逆性来自互反性,象次序结构一样(在这个特殊情况下,是序列、序列对应关系、等等);或者是运算组合系统不是以近似与差别为基础,而是来自邻近性、连续性、和界限的规律,这就组成了一些初级的拓扑学结构(从心理发生学的观点来看,这些结构先于矩阵结构和投影结构,与种种几何学的发展历史正好相反,但却与理论推衍产生的顺序相符!)。

所以,这些事实似乎表明,早从智慧形成的相当原始阶段时起,布尔巴基学派研究所得的那些母结构,在如果不说原始、自然还是非常初步的,并且从理论层次上说离开这些母结构所能具有的普遍性和可能有的形式化程度还很远的形式下,就已经与智慧的功能作用的必要协调,有相对应的关系了。其实,要证明刚才讨论的那些初始的运算在事实上来自感知-运动(级)协调本身是不会很难的,在人类的婴儿身上和在黑猩猩身上一样,这些协调的工具性动作肯定已经具有若干“结构”了。

但是,在阐明从逻辑观点看来上面这些见解意味着什么之前,我们先要看到,布尔巴基学派的结构主义,在一个值得指出的潮流的影响之下,正在转化演变的过程之中。因为这个潮流的确使人看到了发现——如果不说造成——新结构的方式。这就是要创立“范畴”麦克莱恩[MacLane]、艾伦贝格[Eilenberg]等),也就是说要创立一个有若干成分的类,其中包含这些成分所具有的各种函数,所以这个类带有多型性(morphismes)。事实上,按照现在的词义,函数就是一个集合在另外一个集合上或在自身上的“应用”,并导致建立各种形式的同型性或“多型性”。这差不多就等于说,在强调函数时,范畴的重点不再是母结构,而是放在可以发现出结构来的、建立关系的那些程序本身上面。这就又等于把新结构不是看成从先前的各种运算已达成的各种“存在”中引出来的,而是从作为形成过程的这些运算本身里抽绎出来的。

因此,巴普特(S.Papert)在上面所说的范畴里看到的,更多地是为真正理解数学家的运算而努力,而不是为了理解“一元化”数学的运算法的努力,这不是没有道理的。这儿就是反映抽象的一个新的例子,说明这个反映抽象法的本质,不是来自客体,而是来自加在这些客体上的那些动作(即使原先的客体已经是这样抽象得到的一个结果),这些事实,对于结构构成的性质和方法而言,是很宝贵的。

逻辑结构

初看起来,逻辑学似乎是结构的特别有利的领域,因为逻辑学是研究认识的形式,而不是研究认识的内容的。而且还进一步,当我们在(第六节已经指出的)“自然数”这个:“自然”的意义上提出自然逻辑这个问题(现时逻辑学家的看法不对)时,我们很快就看到,逻辑形式处理过的内容仍然有某些形式,具有可以逻辑化的形式的方向,这些内容的形式包括了一些加工得更差的内容,但这些内容又是有某些形式的;如此依次类推,每一个成分对于比它高级的成分来说是内容,而对于比它低级的成分来说是形式。

因此,从广义的观点出发,我们可以同意,每一个逻辑体系(逻辑体系是有无数个的)都能组成一个结构,因为每一个逻辑体系都具有整体性、转换性和自身调整性这三个性质。然而,一方面,这是些专门为此(adhoc)建立起来的“结构”。而不管我们是否说出来,结构主义的真实倾向却是要达到“自然的”结构;“自然的”这个概念有点模棱两可,并且经常是名声不好的,它或者是指在人性中深深扎根的意思(有重又回到先验论上去的危险),或者相反是指有一个某种意义上独立于人性的绝对存在,它只是应该适应人性而已(这第二个意思有重又回到超经验的本质上去的危险)。

另方面,这里有一个更严重的问题:一个逻辑体系,就它所证明的定理的整体而言,就是一个封闭性的整体。但是,这只是一个相对的整体,因为对那些它不加以证明的定理而言(特别是那些不能决定真假的定理,原因是形式化有限度),这个体系的上方是开放着的;而且这个体系的下方也是开放着的,原因是作为出发点的概念和公理,包含着一个有许多未加说明的成分的世界。

后面这个问题,是我们称之为逻辑学的结构主义所特别关心的问题。因为逻辑学结构主义所明白说出来的企图,就是要找出,在被所设定的公理法定了的作为出发点的那些运算下面,可能有些什么。而我们已经找到的,乃是一个若干真正结构的整体,不但可以和数学家所使用的大结构——这些大结构使人在直觉上必须接受,与它们的形式化无关——相比拟;而且与数学家所使用的某些大结构是有同一性的,于是它又成了我们今天叫做普通代数学的这个结构理论的一部分。

特别使人感到惊奇的,是十九世纪符号逻辑学的伟大创始人之一——布尔的逻辑学,构成了一种代数学,叫做布尔代数学。布尔代数学保证了“类”的逻辑和传统形式下的命题逻辑的解释,而且相当于模数为2的算术,就是说它唯一的值是0和1。可是,我们可以从这个代数学中引出一个“网”的结构,只要在所有网结构的共同特性上,增加一个分配性的特性,一个包含着一个极大成分和一个极小成分的特性,还有主要的一个是互补性的特性(这样,每个项都包含了它的逆向或否定项):于是人们称之为“布尔网”。

另一方面,排中选言的(或者是p或者是q,不能兼是两者)和等价的(既是p又是q,或者既不是p也不是q)这两种布尔运算,二者都能组成一个群,而且这两个群之中的每一个群,都可以转换成一个交替的环。这样,我们看到,在逻辑学上又找到了数学上通用的两个主要结构。

但是,此外我们还能抽绎出一个更普遍的群,作为克莱因四元群(groupedequaternalite)的一个特殊情况。假定是这样一个蕴涵命题p=>q的运算:如果我们把这个命题改成逆命题(N),就得到p·(-q)可这就否定了蕴涵关系)。如果我们把p=>q命题的两个项对调,或者单保持原来的蕴涵关系形式而放在否定了的命题之间(-p=>-q),我们就得到它的互反性命题R,即q=>p。如果在p=>q命题的正常形式(也就是p.qV(-p).qV(-p).(-q)中,我们把符号(V)和(·)进行交换,我们就得到p=>q命题的对射性命题C,即(-p).q。最后,如果我们保留p=>q命题不变,我们就得到了恒等性变换I。于是,我们就以代换的方式得到:NR=C;NC=R;CR=N;还有NRC=I。

这样,就有了一个四种变换的群,其二值命题逻辑运算(命题可以是二元的、三元的、等等)提供的例子,和用它的“部分的集合”的那些成分组成四元运算所得到的例子有同样的多;这些四元运算中的某些例子可以是:I=R和N=C,或者I=C和N=R;但是,自然从来不能I=N的。

总而言之,在逻辑学中存在着一些完全意义的“结构”,这是很明确的,而且对于结构主义理论来说,更加有意义的是,我们可以从自然思维的发展中追溯这些结构在心理上的起源。所以,这里有一个问题,要留在将来再加以讨论。

形式化的权宜性限度

但是,关于逻辑结构的思考,对一般结构主义来说,还有另外一个好处:就是指明在哪些方面“结构”不能跟它们的形式化混为一谈?并且指明,在什么上面,从一种我们将要努力逐步加以说明的意义上说,结构是从。“自然的”现实中产生的。

1931年,哥德尔(KurtGodel)有一个发现,影响深远,值得注意。这是因为这个发现推翻了当时占统治地位的、要把全部数学归结为逻辑学、又从逻辑学归结为纯粹的形式化的那种观点;还因为这个发现给形式化规定了一些界限;无疑,这些形式化的界限是可以变动的,或者说是权宜性的,但是在结构建立的某个时候却始终是存在的。的确,他已经证明了一种足够丰富和前后一贯的理论,例如象初等算术,是不能用它本身的手段或某些更“弱”的手段(在这个特殊情况下,是怀特海德(Whitehead)和罗素(Russell)的《数学原理》中的逻辑)来证明它本身是没有矛盾的:仅仅依靠它自己的工具,这个理论就的确会导致一些不能决定真假的命题,因而也就不能达到完备的境地。相反,人们后来发现,在作为出发点的理论内部原来不能实现的这些论证,要是用了更“强”的手段,却可以实现。金琛(Gentzen)用坎托尔的超穷算术在初等算术上做到了这点。但是,坎托尔的超穷算术也无法完成它自己的体系;为了做到这一点,就得求助于更高一级型式的理论。

这些阐述第一个值得注意之点是,在诸结构是可以互相比较的某个特定的领域内引进了结构相对强弱的概念。这样,引进的等级关系马上就暗示了一个构造论观念,就象生物学里不同特性的等级关系曾经暗示过演化论观念一样:一个弱结构使用较初级的方法去论证,而设计越复杂的工具则和愈来愈强的结构相对应,这样看似乎是合理的。

然而,这个构造论观念并不是随便想出来的。哥德尔这些发现的第二个基本教训,的确就是非常直接地迫使大家要接受构造论观念,因为要在论证其不矛盾性方面完成一个理论,只分析这个理论的先验的假设是不够的,而必须去建造下一个理论!直到那时候,人们原可以把各种理论看作是组成了一座美丽的金字塔,建立在自给自足的基础之上,最下面的一层是最坚固的,因为它是用最简单的工具组成的。但是,如果简单性成了弱的标志,如果为了加固一层就必须建造下面一层,那金字塔的坚固性实际上是悬挂在它的顶上;而金字塔的这个顶端本身也没有完成,而要不断往上增高:于是金字塔的形象要求颠倒过来了,更确切他说,是被一个越往上升越来越大的螺旋塔的形象所代替了。

然而,如果说在人的行为的各个阶段,直到简单到感觉-运动图式,以及这些图式的特殊情况知觉图式等,都能找到一些形式,那末是否可以从中得出结论说,一切都是“结构”,并且就此结束我们的陈述呢?在一个意义上也许可以说是的,但是只有在这个意义上,就是说一切都是可以有结构的。可是,结构作为种种转换规律组成的自身调整体系,是不能跟随便什么形式混为一谈的:我们说一堆石子也有一个形式(因为依照“格式塔”学派的理论,存在着“好”形式,也有“坏”形式),但是,只有当我们给这堆石子作出一个精致的理论,把它整个“潜在”运动的体系考虑在内,这堆石子才成其为一个“结构”。这个问题,就把我们引到物理学上来了。

智能化应该不是信息化、数字化的简单延伸、扩展,而是一种与后两者大不相同的新型范式,智能不仅是掌握已知的信息、学习已有的知识,更重要的是生成有价值的信息、知识及有效地使用这些信息、知识。同时,也是理性逻辑推理与感性超逻辑判断的统一。

THE END
1.优质试题60.对立互补命题指的是先后叙述的两个结构基本相同的60 对立互补命题指的是先后叙述的两个结构基本相同的句式中含有两对或者两对以上相互对立的概念,但是其阐发的意思是一致的或者是相互补充的。根据上述定义,下列不属于对立互补命题的是: A.君子坦荡荡,小人长戚戚 B.先天下之忧而忧,后天下之乐而乐 C.仓廪实而知礼节,衣食足而知荣辱 https://m.12tiku.com/tiku/919910/87919281.html
2.行测真题及答案解析87. 对立互补命题指的是先后叙述的两个结构基本相同的句式中含有两对或者两对以上相互对立的概念,但是其阐发的意思是一致的或者是相互补充的。 88. 根据上述定义,下列不属于对立互补命题的是: A. 君子坦荡荡,小人长戚戚 B. 先天下之忧而忧,后天下之乐而乐 C.仓廪实而知礼节,衣食足而知荣辱 D.穷在闹市无人https://www.360wenmi.com/f/filefpbykwg1.html
3.2021年(20201194.对立互补命题指的是先后叙述的两个结构基本相同的句式中含有两对或者两对以上相互对立的概念,但是其阐发的意思是一致的或者是相互补充的。 根据上述定义,下列不属于对立互补命题的是: A.君子坦荡荡,小人长戚戚 B.先天下之忧而忧,后天下之乐而乐 C.仓廪实而知礼节,衣食足而知荣辱 D.穷在闹市无人问,富在http://www.sanlianbook.com/index.php/shows/19/1248.html
4.行测职测解题技巧:定义判断真题讲解9月8日(九)对立互补命题指的是先后叙述的两个结构基本相同的句式中含有两对或者两对以上相互对立的概念,但是其阐发的意思是一致的或者是相互补充的。 根据上述定义,下列不属于对立互补命题的是( )。 A.君子坦荡荡,小人长戚戚 B.先天下之忧而忧,后天下之乐而乐 http://www.gwyks.cn/jtjq/194924.jhtml
5.2024甘肃行测判断推理,定义判断题型解析【试题2】对立互补命题指的是先后叙述的两个结构基本相同的句式中含有两对或者两对以上相互对立的概念,但是其阐发的意思是一致的或者是相互补充的。根据上述定义,下列不属于对立互补命题的是( )。 A.君子坦荡荡,小人长戚戚 B.先天下之忧而忧,后天下之乐而乐 http://www.gsgwy.org/2023/0424/49561.html
6.6.12丸子国京刷题19、对立互补命题指的是先后叙述的两个结构基本相同的句式中含有两对或者两对以上相互对立的概念,但是其阐发的意思是一致的或者是相互补充的。 根据上述定义,下列不属于对立互补命题的是: A.君子坦荡荡,小人长戚戚B.先天下之忧而忧,后天下之乐而乐C.仓廪实而知礼节,衣食足而知荣辱D.穷在闹市无人问,富在深山https://www.wjx.cn/xz/120803757.aspx
7.高考作文审题技巧11篇(全文)不仅问答题有条件限制, 选择题同样有条件限制, 这里指的条件是题设条件, 它涉及时间、角度、对象等多方面的条件限制, 这些往往也是答题的切入点, 一定要充分利用。第四, 审题目的核心要求。要弄清楚命题人的意图, 即弄懂本题考查的知识点。只有把握题目的核心要求, 才算真正读懂题目审好题。https://www.99xueshu.com/w/ikeyl781scee.html
8.高端研究推介(1):隐性进程”与双重叙事动力命题九:同一作者在不同作品中描述同一类事件(例如战士履职)时,都有可能会采取大相径庭的立场。(5) 针对同一人物的三种反讽之互补 在坡的《泄密的心》中,存在三种并列前行的反讽性叙事进程。在情节发展中,主人公—叙述者既说自己神经质又说自己没有疯。他讲述自己起念要杀害长了只 “秃鹰眼” 的老头,通过精心http://whyyzx.lsnu.edu.cn/info/1019/1064.htm