查云飞:大数据检查的行政法构造

[关键词]:大数据;行政检查;依法行政;自动化行政

一、大数据检查:一种新型的行政检查方式

(一)预测挖掘的兴起

国务院《促进大数据发展行动纲要》中所描述的大数据,是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合。信息社会中,这些数据集合可作为“资源”或者“原材料”被创造性处理,可以决定个人、社会以及国家的未来行为走向。发展至今的信息与通信技术帮助人类从被动适应转向了主动利用,人类已经能初步通过各种手段尽可能地提取海量数据,并且借助高性能的数据集通过复杂算法即时分析这些数据,从而得到预期的、非预期的结果。

1.警察法上的警务预测

2.市场监管中的非现场检查

在优化营商环境的背景下,我国市场监管领域不断进行着“放管服”改革,一方面放松事前监管,另一方面加强事中、事后监管。事中监管主要依靠市场监管部门对市场主体是否遵守法律的规定进行监督检查,传统上以现场检查为主,现在转向了非现场检查。

现场检查与非现场检查的分类并不新鲜,早在2000年由证监会颁布的《证券公司检查办法》第5条就提到了检查方式分为现场和非现场两种:“现场检查指检查人员亲临检查现场,通过听取汇报、查验有关资料等方式进行实地检查”;而“非现场检查主要是通过手工或计算机系统对公司上报的业务报表、财务报表等有关资料进行定期和不定期的统计分析,通过设置风险预警指标及时发现公司存在的问题。”只不过在大数据时代,非现场检查的技术手段得到了进一步更新。非现场检查在立法中有时也被非现场监管或者非现场执法所涵盖,例如《优化营商环境条例》第56条要求“政府及其有关部门应当充分运用互联网、大数据等技术手段,依托国家统一建立的在线监管系统,加强监管信息归集共享和关联整合,推行以远程监管、移动监管、预警防控为特征的非现场监管,提升监管的精准化、智能化水平”。以此,事中监管与非现场检查的开展包括“双随机、一公开”检查,都与“互联网+监管”平台建设相挂钩,并以大数据预测为主要活动方式。

3.我国其他领域的应用实例

除比较引人注目的社会治安和市场监管两个领域外,在环境保护、出入境边防和税务行政等领域,行政机关也已经广泛使用预测挖掘技术。例如在环境保护方面,早在2016年当时的环境保护部就颁发了《生态环境大数据建设总体方案》,力图实现大数据在综合决策、日常监管和公共服务三个方面的有效应用。在出入境边防领域,国家移民管理局通过大数据分析研判出入境人员的风险安全等级,提前筛查有违法犯罪嫌疑的人员,在疫情防控中更是常态化地向各地联防联控机制推送预警高风险入境人员信息。在税收行政方面,国家税务总局曾于2015年发布《“互联网+税务”行动计划》,提出将手工录入等传统渠道采集的数据和通过互联网、物联网等新兴感知技术采集的数据以及第三方共享的信息,有机整合形成税收大数据,以支撑纳税服务、税收征管、政策效应分析、税收经济分析等工作。可见,诸多行政领域已经发展到了全流程数字化的数字政务阶段,并且正朝向与人工智能、大数据结合的智慧政务迈进。

(二)预测挖掘的学理归类

可见,预测挖掘在行政关联领域中已经广泛运用,而且存在一定的法规范基础,但如何从行政法的视角统一地看待这样的新型活动方式呢?行政法是以行为形式论为基点的,需要从纷繁复杂、形形色色的行政活动中抽离出在法律上具有重要性的要素,加以归类、组合并确定其在整个行政行为体系中的地位。所以,在讨论规范必要性之前,得先对该行为进行学理归类。

1.大数据检查的界定

制定法上也遵从这样的理解。《浙江省行政程序办法》第76条规定:“行政机关应当依照法定职权,对公民、法人和其他组织遵守法律、法规和规章情况实施行政检查。”《广东省行政检查办法》第3条规定:“本办法所称行政检查,是指行政执法主体依照法定职权,对公民、法人和其他组织(以下称检查对象)遵守法律、法规、规章和执行行政命令、行政决定的情况进行了解、调查和监督的行为。”行政检查作为一种独立的行政行为也受到了司法机关的认可,最高人民法院《关于规范行政案件案由的通知》明确将行政检查列为具体行政行为,从而行政检查成为行政诉讼案件的案由。

行政检查需要以具体的行为方式来实施,从已有的立法规定看,至少包括了查阅、记录、核查、检验、检测、询问、巡查、视频监控等。可以看到,对公共场所进行视频监控,其目的在于监督检查行政相对人是否依法从事生产、生活和其他社会活动,所以属于行政检查的方式之一,可称其为感应式检查。基于同样目的,行政机关对已掌握的海量数据进行挖掘分析,进行风险评估和预警,此种预测挖掘方式也理应归类于行政检查,可称之为大数据检查。所以,前文所述情报主导警务理念下的警务预测完全符合行政检查的界定,而市场监管领域将在风险监管的理念下运用大数据分析的监测、预警和处置的方式称为非现场检查,是相当精准的表达。

2.是检查而非调查

3.大数据检查的性质

大数据检查从形式上可以理解为一种机器挖掘式查阅。在传统的查阅行为中,行政机关主要通过人工的方式对被检查对象的文件资料、监控录像、录音等查询翻阅,根据办案经验分析、研判有无不符合法律规定之处,行政机关查阅被检查人的资料仅在事实上构成对相对人个人信息权益的干预。大数据检查通过机器对所有电子数据不加区分地进行挖掘分析,虽然也涉及被检查对象的个人信息权益甚至隐私权,但大数据检查本身也没有直接引起行政法律关系的发生、变更或者消灭。另外,大数据检查和感应式检查也存在相通之处,在大数据检查过程中,和电子监控抓拍一样需要不断收集、感知被检查对象的数据,但电子监控抓拍本身也只是事实行为。综上,大数据检查并不产生法效力,只发生法效果,其性质应当为事实行为。

二、规范大数据检查的必要性

作为数字时代的一种新型的行政检查方式,是否有必要对其进行规范,取决于其完成检查任务的能力,也需考虑其是否导致了新的权利保护失衡。

(一)预测模型本身的不可靠性

从已有的一些刑事领域的实证研究中可以发现,并非所有的分析模型都起到了预想的功效。例如,美国已经有不少联邦州的警察机关使用警务预测系统来帮助侦查犯罪,2016年经一家美国媒体调查发现,系统中存在针对黑人肤色人群的大数据预测分析,且常年使用该系统并未明显提升发现案件的比率。另一项大型实证研究针对预测芝加哥枪击犯罪嫌疑人展开,结果也未显示该项目有效降低了犯罪率。但也有研究展现了一定的积极效果,例如德国巴登符腾堡州警察机关针对入室盗窃使用预测系统后,此类案件的犯罪率显著下降。比较刑事法领域的研究表明,预测模型的可靠性跟应用场景有关,针对入室盗窃、信用卡盗刷等大规模犯罪所起到的效果较好,原因在于这类案件的样本数据充分,能为预测模型提供足够的测试和训练数据。

比较法上还曾经发生过一个著名的宪法案例,即德国的电子数据缉捕案。德国政府曾采取针对恐怖分子的大规模侦查行动,试图通过数据采集和分析技术找出可能参与恐怖组织犯罪的嫌疑人。北威州警察机关在高等院校、居民登记部门、移民局共享的数据库基础上,根据性别、年龄、民族、宗教信仰和出生国几个标准,构建了筛选模型并得到了一个30000人的数据库,与联邦刑事调查局所掌握的数据库比对后,最后定位到11004个所谓的“潜伏者”,后来经过调查未发现一位真正的嫌疑对象。电子数据缉捕案前后持续了20个月,共采集了800多万组个人信息,德国联邦宪法法院对此种无嫌疑地检查给予了否定性评价,认为电子数据缉捕所使用的预测模型过于粗糙,从结果上的无效也可说明该检查手段是不具有说服力的,在使用此类工具之前应当进行可靠性评估。

(二)自动化行政导致程序缩减

自动化行政,即行政的大部分活动或者全部活动由机器完成。感应式检查和大数据检查都依靠自动化设备进行,前者由设备完成信息采集、识别确认再经人工审核,而大数据检查由设备汇集数据、分析数据、预测结果,行政机关根据预测结果再进行处置,所以两者都属于自动化行政。传统的行政程序从“人”的行为出发,按人的行为经验将整个行政程序分割成若干个可控的节点,在每个节点处设计控权机制,而在自动化行政中这些节点则不复存在,相对人仅感知到结果,其程序权利被大幅压缩。

最为压缩的情形出现在作出全自动具体行政行为的程序中,所谓的全自动具体行政行为,是指行政机关依照法定职权,借助电子技术和设备由机器全程完成行政程序,并作出个案规范性的且具有直接外部效力的单方行为。在全自动具体行政行为的程序中,相对人的听证、陈述、申辩和阅卷权等核心权利都有可能被实质性限缩。行政机关通过模块化和自动化开展行政程序,在减轻机关工作的同时,不应当以牺牲参加人的程序权利为代价,为此数字时代的行政程序法应对各项程序权利重新调整,通过例外、限制或代偿的方式平衡行政效率和行政相对人的权利保护。

以上程序主要是为现场人工检查而设计的,并不都适用于自动化行政检查,例如,在感应式和大数据检查中应当如何表明工作人员身份,如何说明理由,相对人如何行使陈述、申辩权,何时告知相对人,这些问题尚无定论。以说明理由和听取陈述、申辩为例,行政机关在实施行政检查之前,本应当向行政相对人简要说明行政检查的事实、法律依据,并听取相对人的陈述、申辩,以决定是否实施行政检查。但在自动化行政检查中,程序的开始和进行都由机器自动进行,中间并不存在行政机关与行政相对人互动的可能,原有的程序设计被自动化行政架空。不过,设置行政程序的目的在于规范行政权的行使,通过控制过程确保行政机关所作的行政行为合法,在自动化行政导致程序缩减时,仍可根据新的程序模式重新设计,这也说明从程序角度有规范大数据检查的必要性。

(三)全面数据分析有损人的尊严

过度依赖大数据分析,人的主体地位将被削弱,人的自由选择的意志和能力将被放弃,成为集体选择的工具。大数据分析有可能违反“客体公式”,当个人被贬低成为客体、单纯的工具或可替代的数值时,即侵害了人的尊严。大数据分析对人的尊严的减损,具体表现在以下三个方面。

第二,大数据分析将对目标群体进行深度人格画像。已经有不少民法学者针对网络平台企业进行的人格画像提出了批评,指出“通过大数据和人工智能技术进行人格画像,将原本属于主体的自然人降格为客体并加以操控,损害人格自由等”;“随着信息技术的发展,自动化处理技术可以勾勒出自然人的人格画像,使人成为分析的对象,这会令人在精神上感到不安,也会有损人的尊严。”当行政机关作为信息控制主体时,其与技术企业展开合作,在后者的技术支持下深度挖掘已掌握的海量数据,所描绘出信息主体的人格画像比私人网络平台更深入彻底。在私法领域,严格限制人格画像的目的主要是防止影响自然人的意思自治,例如,网络平台企业可以利用大数据实现精准推销、大数据杀熟等行为,而在公法领域,人格画像意味着主体的客体化,作为透明人成为被规训的客体。

第三,大数据分析的逻辑是通过统计过去预测未来,以过去的经验评价未来的行为,其分析结构可以简化表达为:“因为X1过去+X2过去+X3过去……+Xn过去=Y现在,所以X1现在+X2现在+X3现在……+Xn现在=Y未来”。人应当为已经发生的行为承担后果,此时人的自由意志和能力必定受到限制,承担责任之后则回复圆满状态,这也是刑罚理念从惩罚为主变迁至惩罚与教育相结合的原因,如何再社会化是刑事政策研究的重点。大数据分析则意味着,主体始终要受到过去行为的影响,哪怕已经承担责任并已改过自新,也将不断受到各种限制。抛开是否违反一事不再罚之法理不谈,若大数据预测的同时也就完成了未来案件事实的证明过程,则作为主体的承担法律责任的自由意志将不复存在。面对时时刻刻的大数据分析,主体感受到的始终是被管制而不是被服务,此时发生了数字化异化,而“相对于其他形式的异化,数字化异化的方式更‘润物细无声’,人被异化的过程也更加隐秘和绵延,个体往往在不知情的情形下就被精准识别、精准应对和高效异化。”

三、如何构造:对原有框架的数字化调适

既然存在规范大数据检查的必要性,接下来需要讨论如何进行规范构造。首先,大数据检查作为新型的行政检查方式,仍然应当在行政检查的框架内予以构造,即应当遵守依法行政对行政检查提出的要求,法律保留、程序规范、实体规范等仍应当遵守。其次,大数据行政检查作为自动化行政的一种,其活动方式已经发生变化,按原有线下场景构建的制度需要按照数字化行政的特点予以调适。

(一)法律保留

(二)程序规范

在自动化行政必然缩减原有程序的背景下,得考虑按照新的程序节点重新进行控权安排,通过采用不低于传统程序的权利保护标准,使得追求行政效率的同时不牺牲行政相对人的权益。按照大数据检查的四个阶段,即数据汇集、模型建构、数据分析和预警、处置,以数据行为规范为中心,进行程序方面的数字化调适设计。

1.数据汇集

2.模型建构

大数据分析所依赖的模型应当尽量可靠,否则结论不具有参考价值。正如在感应式检查中,按《行政处罚法》第41条第1款的规定,电子技术监控设备应当经过法制和技术审核,确保电子技术监控设备符合标准,大数据分析模型也一样。履行行政检查职责的行政机关在与技术公司共同建构模型时,应当邀请多方主体参与,包括但不限于网信部门、工信部门、公安部门,有条件的还应当邀请专门的数据官员,以确保分析模型的可靠性。为提升模型的精确性,可以从正反两方面确定标准,增加嫌疑为正面标准,排除嫌疑则为反面标准,具体标准从以往的典型案例中抽取,两相结合使得落入模型的数据样本尽量少且精确。此外,模型建构得遵守平等保护要求,排除歧视性的标准,以确保不会得出歧视性的结论,尤其是种族、民族、宗教信仰等指标不应出现在大数据分析模型中。

3.数据分析和预警

4.处置

(三)实体规范

1.禁止自证其罪

有刑事诉讼法学者认为,大数据侦查时所利用的风险评估系统有赖于被追诉人自己所提供的数据,在不透明的自动化决策过程中,被追诉人无意中进行了自证其罪。同样的关切也发生在行政法领域,自动化行政下行政机关高度依赖数据的互联互通,若超出最初收集数据时的目的利用这些数据进行调查,从而证明行政相对人违法并以此施加处罚,属于一种非自愿的自证其罪。既然禁止自证其罪原则同样应适用于行政检查,那么可以从两个方面对大数据检查进行规范:第一,禁止自证其罪原则反对的是强迫行政相对人自己提供信息,在最开始收集数据时就应当尽可能地告知行政相对人所收集数据有作为大数据分析的可能性;第二,禁止自证其罪原则还反对利用强迫获取的信息来证明行政相对人违法,应当坚持大数据检查的辅助性,即行政机关不得直接根据检查结果作出不利于相对人的行政决定,应当根据案情进行进一步的现场检查或者转入调查程序。通过这两方面的制度设计,可避免大数据检查违背禁止自证其罪原则。

THE END
1.大数据预测分析的四个关键因素预测分析的关键点有哪些大数据预测分析(Big Data Predictive Analytics)可谓是大数据的圣杯,也是众多数据分析人士的终极梦想。谁不想帮助企业做出英明的业务决策、卖出更多商品和服务、让客户更开心同时避免灾难的发生呢?但是预测分析同时也是一个极端困难的任务,实施成功的预测分析有赖于以下四大关键因素: https://blog.csdn.net/xinxing__8185/article/details/46470067
2.大数据分析预测需求.docx大数据分析预测需求.docx 26页内容提供方:布丁文库 大小:41.09 KB 字数:约1.21万字 发布时间:2024-06-28发布于浙江 浏览人气:4 下载次数:仅上传者可见 收藏次数:0 需要金币:*** 金币 (10金币=人民币1元)大数据分析预测需求.docx 关闭预览 想预览更多内容,点击免费在线预览全文 免费在线预览全文 https://max.book118.com/html/2024/0627/8067071040006104.shtm
3.大数据预测性分析大数据预测性分析:洞察未来趋势的关键 随着大数据时代的到来,大数据预测性分析成为越来越多企业重要的战略工具。通过利用大数据技术和分析工具,企业可以更准确地预测未来趋势,从而优化决策和资源分配。本文将探讨大数据预测性分析的重要性、应用领域以及实施策略。 http://www.ntqsjj.com/zhxy/54127.html
4.大数据分析能否预测未来趋势为决策提供依据大数据分析能否预测未来趋势为决策提供依据 大数据时代,一个充满了无限可能的新纪元。随着技术的飞速发展,大数据已经渗透到了我们生活的每一个角落,从金融服务到医疗保健,再到日常消费,它都在发挥着其巨大的影响力。然而,这一时代也带来了新的挑战:如何利用这些数据来预测未来的趋势,为决策提供依据?这一问题是我们今天https://www.jvahvb5c.cn/shou-ji/487055.html
5.预测分析和大数据分析的终极指南数据分析根据IBM公司的研究,大数据预测分析属于高级分析。它能够借助历史数据、统计建模、数据挖掘和机器学习预测未来结果。企业使用预测分析,借助于可以预测的数据模式,了解其风险和机遇。 预测分析也属于大数据和数据科学。如今,企业使用事务性数据库数据、设备日志文件、图像、视频、传感器和其他数据源来获取见解。企业可以借助深度https://www.d1net.com/bigdata/analysis/571788.html
6.一分钟攻略#加拿大28大数据分析预测网(2024平台推荐依托加拿大28大数据分析预测网大数据平台的专业分析,我们通过历史开奖数据和走势的精确分析,致力于为用户提供最专业的预测服务前10月中国市场手机出货量2.5亿部 同比增8.9% 中新社北京11月27日電 (記者 劉育英)中國信息通信研究院27日發佈的數據顯示,今年前10個月,中國市場手機出貨量2.5億部,同比增長https://m.dslyy.com/patt1128i74IB-PoZG
7.每天1分钟加拿大28大数据分析预测网(2024排行榜加拿大28大数据分析预测网 加拿大pc28二维码 采用加拿大28大数据分析预测网与GPT-4.0+AI智能模型,提供最精准的预测和查询服务,聚焦专业研究和算法创新,力求打造最优质的查询平台(高质量发展调研行)苏轼云“一日不可无此君”,“此君”何以育一方?https://www.ccgx.gov.cn/mahjZp11130.aspx
8.大数据三大分析类型解析:描述性,预测性,规范性分析慧都智能制造大数据革命催生了不同种类,类型和阶段的数据分析。在本文中,就将探讨三种不同类型的分析-描述性分析,预测性分析和描述性分析-来了解每种类型的分析可以提供什么以改善组织的运营能力。 描述性分析 如今,90%的组织使用描述性分析,这是分析的最基本形式。定义描述性分析的最简单方法是回答问题“发生了什么?”。这种类https://bigdata.evget.com/post/16976.html
9.大数据分析技术时间序列分析在金融市场预测与销售趋势分析中的应用大数据分析技术是利用先进的计算机和数据处理技术,对海量、多样化和高维度的数据进行分析和挖掘,从中获取有价值的信息和知识。它可以帮助企业更好地理解市场,预测趋势,优化销售策略,提高营销效率。 大数据分析技术的核心作用 大数据分析技术通过数据挖掘、机器学习、人工智能等手段,对海量数据进行深入分析,从而为企业提供更准https://www.jianshu.com/p/76d2e2517e7e
10.如何利用大数据分析来预测和应对市场风险?利用大数据分析来预测和应对市场风险是一种先进的方法,可以帮助公司更好地制定战略和管理风险。以下是一些步骤和方法,可以帮助公司有效利用大数据分析来预测和应对市场风险:1. 数据收集和整理:收集与市场风险相关的各种数据,包括市场趋势、竞争情报、消费者行为等。整理和清洗数据,使其适合分析。2. 数据分析:利用数据分析https://www.chinaacc.com/zhucekuaijishi/jhwd/zy20231128113440.shtml
11.大数据决策分析——数据建模与预测(豆瓣)本书将大数据分析用于管理实践与政策评估中的多个应用场景,运用管理学、数据科学、系统工程、交通工程、统计学、数学等不同学科的分析模型和研究方法,实现多学科的深度交叉融合,促进数据建模与预测科学的发展。 本书的研究内容将有助于提升管理者的决策能力和创新效率,揭示决策范式转变的机理与规律,开展以决策支撑为导向https://book.douban.com/subject/36469184/
12.什么是大数据分析?MicrosoftAzure通过本指南了解云中的大数据分析。了解大数据如何实现更全面、更明智的决策方法。https://azure.microsoft.com/zh-cn/resources/cloud-computing-dictionary/what-is-big-data-analytics
13.百家争鸣:2019大数据预测观点数据观中国大数据产业观察Fractal analytics的战略顾问、董事会成员道格?希拉里(Doug Hillary)表示,(未来)分析有足够的空间去影响日常业务的方方面面。 【数据观注释】Fractal Analytics组建于2000年,致力于为企业(消费品公司、零售商和金融机构)提供理解、预测和培养消费者行为,及改善市场营销、定价、供应链、风险管控和索赔管理的工具。 https://www.cbdio.com/BigData/2019-01/07/content_5978881.htm