小学六年级数学《圆锥的体积》教案(精选14篇)

作为一名默默奉献的教育工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么写才合适呢?下面是小编帮大家整理的小学六年级数学《圆锥的体积》教案,希望能够帮助到大家。

【教学内容】

圆锥的体积(1)(教材第33页例2)。

【教学目标】

1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

【重点难点】

圆锥体积公式的推导过程。

【教学准备】

同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

【情景导入】

1、复习旧知,作出铺垫。

(1)教师用电脑出示一个透明的圆锥。

教师:同学们仔细观察,圆锥有哪些主要特征呢?

(2)复习高的概念。

A、什么叫做圆锥的高?

B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

2、创设情境,引发猜想。

(1)电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

(2)引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

【新课讲授】

自主探究,操作实验

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

(1)小组实验。

A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

B、同组的学生做完实验后,进行交流,并把实验结果写在黑板上。

(2)全班交流。

①组织收集信息。

学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:

A、圆柱的体积正好等于圆锥体积的3倍。

B、圆柱的体积不是圆锥体积的3倍。

c、圆柱的体积正好等于圆锥体积的8倍。

D、圆柱的体积正好等于圆锥体积的'5倍。

E、圆柱的体积是等底等高圆锥体积的3倍。

f、圆锥的体积是等底等高圆柱体积的。

②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

(3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?

(4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?

(5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

【课堂作业】

完成教材第34页“做一做”第1题。

先组织学生在练习本上算一算,然后指名汇报。

答案:13×19×12=76(cm3)

【课堂小结】

教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。

【课后作业】

1、完成练习册中本课时的练习。

2、教材第35页第3、4、5题。

答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。

第4题:(1)25、12(2)423、9

第5题:(1)×(2)√(3)×

教学内容:教材第16~19页圆锥的认识和体积计算、例1。

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:

长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:

掌握圆锥的特征。

教学难点:

理解和掌握圆锥体积的计算公式。

教学过程:

一、铺垫孕伏:

1、说出圆柱的体积计算公式。

2、我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、自主探究:

1、认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2、根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3、利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的'特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系

4、学生练习。

口答练习三第1题。

5、教学圆锥高的测量方法。(见课本第17页有关内容)

6、让学生根据上述方法测量自制圆锥的高。

7、实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系得出圆锥的体积是与它等底等高的圆柱体体积的。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律

(4)是不是所有的圆柱和圆锥都有这样的关系教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积=底面积高

用字母表示:V=Sh

(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么为什么要乘以

8、教学例l

(1)出示例1

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习

1、做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

2、做练习三第4题。学生书面练习,小组交流,集体订正。

四、课堂小结

这节课你学习了什么内容圆锥有怎样的特征圆锥的体积怎样计算为什么

五、课堂作业

练习三第3题及数训。

六、板书:

圆锥

圆锥的特征:底面是圆,

侧面是一个曲面,展开是一个扇形。

它有一个顶点和一条高。

圆柱的体积=底面积高

圆锥的体积=圆柱体积

圆锥的体积=底面积高V=Sh

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

【教学重点】

圆锥体体积计算公式的推导过程.

【教学难点】

正确理解圆锥体积计算公式.

【教学步骤】

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的.时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

5、推导圆锥的体积公式:

圆锥的体积是和它等底等高圆柱体积的1/3

V=1/3Sh

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

(二)教学例1

1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

学生独立计算,集体订正.

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、随堂练习

1、求下面各圆锥的体积.

(1)底面面积是7.8平方米,高是1.8米.

(2)底面半径是4厘米,高是21厘米.

(3)底面直径是6分米,高是6分米.

【板书设计】

教学内容:

教材第20页例2、练一练。

使学生进步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:

进步掌握圆锥的体积计算方法。

根据不同的条件计算圆锥的体积。

1、口算。

2、复习体积计算。

(1)提问:圆锥的体积怎样计算?

(2)口答下列各圆锥的体积:

①底面积3平方分米,高2分米。

②底面积4平方厘米,高4.5厘米。

3、引入新课。

今天这节课,我们练习圆锥体积的'计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

l、教学例2。

出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。

2、组织练习。

(1)做练一练。

指名一人板演,其余学生做在练习本上,集体订正。

(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后

学生做在练习本上。集体订正。

(3)讨论练习三第7题。

底面周长相等,底面积就相等吗?

三、课堂小结

这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。

四、布置作业

1、练习三第5题及数训。

2、出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。

3、思考练习三第8、9题。

教学目标

1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。

2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。

3、培养学生认真审题,仔细计算的习惯。

重点:

进一步掌握圆锥的体积计算及应用

难点:

圆锥体积公式的灵活运用

教学过程

一、知识回顾

1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?

2、学生说,教师板书:

圆锥圆柱

特征1个底面2个

扇形侧面展开长方形

体积V=1/3SHV=SH

二、提出本节课练习的内容和目标

三、课堂练习

(一)、基本训练

1、填空课本1----2(独立完成后校对)

2、圆锥的`体积计算

已知:底面积、直径、周长与高求体积(小黑板出示)

(二)、综合训练:

1、判断

(1)圆锥的体积等于圆柱的1/3

(2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH

(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升

(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米

2、应用:练习四第45题任选一题

3、发展题:独立思考后校对

四课堂小结:说说本节课的收获

目标:

1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。

2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。

3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。

掌握圆锥体积的方法

公式的推导

准备:

沙,圆柱教具若干个,圆锥一个,其中要有一组等底等高的圆柱和圆锥

教程:

一、准备

同学们,我们以前研究过一些立体图形,如长方体,正方体,圆柱体,它们的体积各是怎样计算的呢?

二、诱发

课件演示稻谷丰收的景象。师述:稻谷丰收了,农民伯伯忙着收割稻谷,他们把收好的稻谷堆成一个这样的图形(圆锥形谷堆),同学们你们认识吗?你能算出这堆稻谷的体积吗?它和圆柱的体积有什么联系呢?这就是我们这节课要学习的内容。

三、探究释疑

1、初次猜想

⑴根据我们所学过的内容,请同学们猜一猜,圆锥的体积应该怎样计算?

⑵圆锥的体积是否能用“底面积×高”来计算呢

⑶学生通过观察,发现“底面积×高”不是圆锥的体积,而是与它等底等高的圆柱的体积。

2、再次猜想

⑴通过模型演示,

⑵根据学生回答,从而得到如下结论:

圆锥的体积=×圆柱的体积(等底等高)

3、分组实验进行验证

⑴让学生用三个不同的圆柱体和一个圆锥(其中必有一组等底等高的圆柱和圆锥)来进行实验。

⑵分组讨论,分组汇报

用字母表示:V=1/3Sh

4、联系实际,进行运用

⑴出示例1,学生尝试练习,集体订正。

⑵教学例2、课件出示:

麦收季节,张小红把她家收的小麦堆成一个近似圆锥的麦堆,又给出测量的数据,让学生看图编一道求小麦重量的应用题。

编好后,分组讨论计算

学生自己列式计算,集体订正

四、转化

1、基础题

⑴下面有四组图形,你能根据每组图形中左图的体积,求出右图的体积吗?为什么?

24立方米9立方米12立方米

⑵一个圆锥的底面直径是4厘米,高5厘米,它的`体积是多少?

2、提高题

有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆柱体,被削去的体积是多少?

3、思考题

把一个棱长6厘米的正方体铁块和底面直径、高都是6厘米的圆柱形铁块,熔铸成一个直圆锥体,如果这个直圆锥体和圆柱的底面大小一样,这个直圆锥体的高是多少厘米?(得数保留整数)

五、应用

1、基础题:P44-T3、4

2、提高题:P45-T10

3、思考题:P45-T11、12

教科书第52页练习十二的第69题。

教学目的:

通过练习,使学生进一步熟悉圆锥的体积计算。

一、复习

1、圆锥的体积公式是什么?

2、填空。

(1)一个圆锥的体积是与它等底等高的圆柱体积的

(2)圆柱的体积相当于和它等底等高的圆锥体积的()倍。

(3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的,相当于圆锥的()倍。

二、课堂练习

1、做练习十二的第6题。

教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:

让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板

测量出圆锥的高,这样就可以求出圆锥的体积。

2、做练习十二的第7题。

读题后,教师可以先后提问:

这道题已知什么?求什么?

要求这堆沙的重量,应该先求什么?怎样求?

指名学生回答后,让学生做在练习本上,做完后集体订正。

3、做练习十二的第8题。

读题后,教师可提出以下问题:

这道题要求的是什么?

要求这段钢材重多少千克,应该先求什么?怎样求?

能直接利用题目中的数值进行计算吗?为什么?

题目中的单位不统一,应该怎样统一?

分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的`结果还应把克改写成千克。

4、做练习十二的第9题。

读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?

要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。

让学生独立做在练习本上,做完后集体订正。

三、选做题

让学有余力的学生做练习十二的第10*、11*、12*题。

1、练习十二的第10*题。

教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

引导学生利用C=2r可以得到r=。再利用SR,就可以求得S=()。再利用圆锥的体积公式就可以求出其体积。

2、练习十二的第11*题。

这是一道有关圆柱、圆锥体积的比例应用题。

可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

设圆柱的高为x厘米。

=

X=9。6

(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)

3、练习十二的第12题。

这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

教学内容

教科书第40~41页例2,练习九第3~7题。

1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。

2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。

3.在探究问题中,发展学生的空间观念。

运用圆锥体积的计算方法解决生活中的问题。

灵活运用圆锥的体积计算公式解决问题。

小黑板

一、复习引入课题

教师:怎样计算圆锥的体积?

学生回答,教师板书体积公式:V=13SH

教师:谁能说说圆锥的体积计算公式是怎么推导出来的?

抽学生简要叙述圆锥的推导过程。

教师:要求圆锥的体积,应该知道哪些条件?

让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。

教师:这节课我们就利用圆锥体积的计算方法解决生活和学习中常见的数学问题。

板书课题:圆锥的体积二

1.教学例2

教师用投影仪出示例2。

一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)

教师要求学生带着问题理解题意。用投影仪出示问题。

(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?

(2)要求这堆煤的质量,必须先求什么?

(3)要求煤的体积应该怎么办?

(4)这题应先求什么?再求什么最后求什么

教师鼓励学生独立思考,教师适时点拨。

反馈:要求学生用完整的语言叙述题意。

教师抽学生叙述思考过程,要求语言简洁,思路清晰。

在反馈过程中,尽量多抽几个学生叙述。

通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。

教师抽学生上台板算。

板书:

煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)

煤堆的体积:13×28.26×1.8=16.956(M3)

1.4×16.956÷5≈5(辆)答:……

教师:最后的结果为什么要取整数部分再加1?

让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。

教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?

2.小结

要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。

1.教师用投影仪出示教科书第42页第3题

观察图形,独立解答。抽二生上台板算。

让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。

2.解答教科书第42页第4题

学生独立解答,抽生反馈说出思考过程。

通过这一题的练习,体会圆锥与圆柱之间的关系。

3.解答练习九第6题

学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的`关键是抓住体积不变进行解答。

4.发展练习

有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?

教师引导学生读题,理解题意。

弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。

学生小组内交流,探讨解决方案。

反馈:学生用完整清晰的语言叙述解题思路。

例2……

1.4×16.956÷5≈5(辆)答:

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

教学重点和难点

圆锥体体积公式的推导。

教学过程设计

(一)复习准备

1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。

这是什么体?(圆锥体)

(板书:圆锥)

上节课我们已经认识了圆锥体,这里有几个画好的几何形体。

(出示幻灯)

一起说,几号图形是圆锥体?(2号)

(指着圆锥体的底面)这部分是圆锥体的什么?(底面)

(指着顶点)这呢?

哪是圆锥体的高?(指名回答。)

(用幻灯出示几个图形。)

在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。

(学生举卡片反馈)

你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)

那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。)

看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。

(板书,在“圆锥”二字的后面写“的体积”。)

(复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)

(二)学习新课

(老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?

(再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)

看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。

为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)

既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)

为什么?(因为圆锥体的体积小)

(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。

(学生分组做实验。)

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?

(学生发言。)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(不是)

是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?

(因为是等底等高的圆柱体和圆锥体。)

呢?(在等底等高的情况下。)

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。

(老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)

(三)巩固反馈

1.口答。

填空:

2.板书例题。

例一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?

(指名回答,老师板书。)

=20(cm3)

答:它的体积是20cm3。

3.练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。

(幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。

(学生在小黑板上只写结果,举黑板反馈。)

你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的'问题就解决了,看来判断问题必须要有科学依据。

5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。

(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是()(dm3)。

②3a(dm3)

③a3(dm3)

(举卡片反馈,订正。)

(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是()cm3。

(学生举卡片反馈,订正。)

6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)

为什么?(因为不知道底面积和高。)

需要测量什么?(底面半径和高。)

怎么测量?(小组讨论。)

(指名发言)

今天回家后,把你们测量的数据写在本子上,再计算出体积。

这节课我们学了什么知识?

出思考题:

现在我们比一比谁的空间想象能力强。

看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。

(四)指导看书,布置作业

(略)

课堂教学设计说明

本节课的主要特点有以下几点:

一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程当中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。

三是教学层次清楚,步步深入,重点突出。

四是练习有坡度,形式多,教学反馈及时、准确、全面、有效。

板书设计

教学目标:

1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。

2、能运用公式解答有关的实际问题。

3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

教学重点:通过实验的方法,得到计算圆锥体积的公式。

教学难点:运用圆锥体积公式正确地计算体积。

一、创设情境,引发猜想

在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。

小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

二、自主探索,操作实验

1、出示学习提纲

(1)利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?

(2)你们小组是怎样进行实验的?

(3)你能根据实验结果说出圆锥体的体积公式吗?

(4)要求圆锥体积需要知道哪两个条件?

2、小组合作学习

3、回报交流

结论:圆锥的体积是等底等高的圆柱体积的1/3。

公式:V=1/3Sh

4、问题解决

小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?

5、运用公式解决问题

教学例题1和例题2

1、圆锥的底面积是5,高是3,体积是()

2、圆锥的底面积是10,高是9,体积是()

3、求下面各圆锥的体积.

4、判断对错,并说明理由.

(1)圆柱的'体积相当于圆锥体积的3倍.()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1.()

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()

四、拓展延伸

一个圆锥的底面周长是314厘米,高是9厘米,它的体积是多少立方厘米

五、谈谈收获

六、作业

1、知识与技能

理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法

通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

3、情感态度与价值观

渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

理解圆锥体积公式的推导过程。

教具学具:

不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

教学流程:

一、创设情境,提出问题

师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

生:我选择底面的;

生:我选择高是的;

生:我选择介于二者之间的。

师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么形状?(圆锥体)

生:你会求吗?

师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

二、设疑激趣,探求新知

师:那么你能想办法求出圆锥的体积吗?

(学生猜想求圆锥体积的方法。)

生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

师:如果这样,你觉得行吗?

教师根据学生的回答做出最后的`评价;

生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

小组中大家商量。

生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

师:此种方法是否可行?

学生进行评价。

师:哪个小组还有更好的办法?

生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

1、各小组进行观察讨论。

2、各小组进行交流,教师做适当的板书。

通过学生的交流出现以下几种情况:

一是圆柱与圆锥等底不等高;

二是圆柱与圆锥等高不等底;

三是圆柱与圆锥不等底不等高;

四是圆柱与圆锥等底等高。

3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

生:大约是圆柱的一半。

生:……

师:到底谁的意见正确呢?

师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

要求:

实验材料,任选沙、米、水中的一种。

实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

(生进行实验操作、小组交流)

师:

通过做实验,你们发现它们有什么关系?

生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

齐读结论:

师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

(小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

(噢!三种冰淇淋的体积原来一样大)

联系生活,拓展运用:

本练习共有三个层次:

1、基本练习

(1)判断对错,并说明理由。

圆柱的体积相当于圆锥体积的3倍。()

一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()

一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()

(2)计算下面圆锥的体积。(单位:厘米)

s=25、12h=2、5

r=4,h=6

2、变形练习

(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

(2)、找一找这些计算方法有什么共同的特点?V锥=1/3Sh

(3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?

3、拓展练习

一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

整理归纳,回顾体验

(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

圆锥的体积计算公式。

教学目的

知道圆锥体积公式的推导过程,理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题,对学生进行辩证物主启蒙教育。

教学重点

圆锥体积的计算公式

教学难点

圆锥体积公式的推导。

教具准备

沙、圆锥教具,圆柱教具若干个,其中要有等底等高圆柱,圆锥各两对。

1、口答圆柱体积计算公式。

2、计算下面各圆柱的体积。

(1)底面积是6.28平方分米,高是5分米。

(2)底面半径是2分米,高与半径相等。

(3)底面直径6厘米,高5厘米。

(4)底面周长6.28分米,高2分米。

小结学生练习情况。

二、新授

1、点明课题:锥体积的`计算

2、全积公式推导

(1)要研究圆锥的体积,你想提出什么问题?

①圆锥的体积与什么有关?有怎样的关系?

②为什么有这样的关系呢?

(2)出示教具让学生观察圆锥体积与底面积,高有关系。

①要研究圆锥的体积需转化成已学过的物体积来计算。

②实验

(1)出示底等高的圆锥容器教具观察特征:等底、等高。

(2)老师示范用空圆锥装满沙往空圆柱里倒,让学生观察看看倒几倒满圆柱。

(3)得出结论:圆锥体积等于这个圆柱体积的1/3。

(4)老师再一次实验。

(5)学生动手实验:先做等底等高的实验,再做不等底不等高的实验,然后提问:圆锥体积都是圆柱体积的1/3吗?为什么?

3、学生讨论实验情况,汇报实验结果。

4、推导出公式

5、练习(口答)

(1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?

(2)一个圆锥体积是150立方厘米,与它等底等市的圆柱体积是多少立方厘米?

突出强调:“等底等高”这一前提下圆柱与圆锥的体积关系。

6、运用公式

(1)出示例1。一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

学生尝试练习,老师讲评。

(2)出示例2。在打谷场上,有一个近公似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?

学生读题思考片刻后问:要求小麦重量需先求出什么?要求体积需知道什么?然后学生尝试练习,个别板演,练习后评讲。

课本第43页的“做一做”第1、2题。练习后评讲。

四、小结:今天这节课,你学到了什么知识?要求圆锥的体积需要知识哪些条件?

五、作业

完成练习九的第3――5题。

1、通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2、通过学生动脑、动手,培养学生的思维能力和空间想象能力。

3、培养学生个人的自主学习能力和小组合作学习的能力。

教学重难点

掌握圆锥体体积公式的推导。

(一)复习导入:

1、怎样计算圆柱的体积?

(板书:圆柱体的体积=底面积×高)

2、示例

(1)一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

(2)一个圆柱的底面直径是6分米,高10分米,它的体积是多少立方分米?

3、(出示圆锥体)

问:圆锥有什么特征?

师:怎样计算圆锥的体积呢?

(二)探索尝试,解释交流。

1、师:在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的?

学生回答,教师板书:

圆柱———(转化)———长方体

师:借鉴这种方法,为我们研究圆锥体体积提供了方便,每个组都准备了一个圆柱体和一个圆锥体。你们比比看,它们有什么相同的地方?

2、问:你发现到什么?

师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)

师:既然这两个形体是等底等高的.,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(师把圆锥体套在透明的圆柱体里。)

师:是啊,圆锥体的体积小,你估计一下这两个的体积有什么样关系?

师:用沙子、圆柱体、圆锥体做实验。

3、谁来汇报你们组是怎样做实验的?

师:你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(板书)

师:同学们得出这个结论非常重要,其他组也是这样的吗?

师:通过刚才同学们的动手我们发现等底等高的圆柱和圆锥有这样一个倍数关系。我们再来一起回一下实验过程。

大家一起把实验报告表填一下。

我们学过用字母表示数,如果用v表示体积,用s表示底面积,用h表示高。谁来把这个公式整理一下?(板书:)

4、出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

师:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(举例)

(三)课堂练习

1、求下面圆锥的体积。

(1)底面半径是2厘米,高3厘米。

(2)底面直径是6分米,高6分米。

2、用数学

(1)如果小麦堆的底面半径为2m,高为1.5m。小麦堆的体积是多少立方米?

(2)一个圆锥形零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

(3)一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

(四)课堂小结

通过本节课的学习,你有哪些收获?

教材第13-14页圆锥的认识和体积计算,便如“练一练”,练习三第1-5题。

1、使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2、使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3、培养学生初步的空间观念和发展学生的思维能力。

一、复习引新

2、我们已经学过了长主体、正方体及圆柱体。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是圆锥。今天这节课,就学习圆锥和圆锥的体积。

二、教学新课

1、认识圆锥。我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2、利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的`底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆以后距离是圆锥的高。

3、学生练习。口答练习三第1题。

4、教学圆锥高的测量方法

5、让学生根据上述方法测量自制圆锥的高。

6、实验操作,推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有什么样的关系?

(3)实验操作,发现规律。圆锥的体积是与它等底等高的圆柱体体积的。

(4)是不是所有的圆柱和圆锥都有这样的关系?只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。V=sh

(6)小结,要求圆锥体积必须知道哪些条件?公式中的底面积乘以高,求的是什么?为什么要乘以?

7、教学例1

(1)出示例1。

(2)审题后让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

1、做“练一练”第2题。

强调:要乘以。

2、做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书,错的要求说明理由。

3、做练习三第3题。

让学生做在课本上。

第(3)、(4)题让学生说说是怎样想的。

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

THE END
1.快乐8方案快乐8奖金计算说明 玩法 中奖条件 奖金 玩法 中奖条件 奖金 选十 中10 最高500万 选七 中7 10000 中9 8000 中6 288 中8 800 中5 28 中7 80 中4 4 中6 5 中0 2 中5 3 选六 中6 3000 中0 2 中5 30 选九 中9 300000 中4 10 中8 2000 中3 3 中7 200 选五 中5 1000 中6 20 https://6.17500.cn/?lottery=bet&h=2&lotteryId=kl8&schemeId=9197786
2.全网最强指南:彩票快乐8玄学算法彩票快乐8玄学算法+ Q : 6 3 7 2 4 0 3 】R Y 9 8 5 . V I P 【域名手动在浏览器打开】【独家团队】【精准计划】【万人聊天室】不论昨日如何,今天都是全新的。勇敢地迈出第一步,因为你的梦想正等着你 推荐视频 已经到底了 热门视频 已经到底了 https://www.sohu.com/a/834240021_122147661
3.快乐8选号技巧分享:快乐8奇数斜连号彩票技巧推荐结合冷热号分析:虽然斜连号本身是热号的一种表现,但在实际选号中,还可以结合冷热号进行分析。例如,当某个斜连号长时间未开出时,可以适当关注;而当某个斜连号连续开出多次时,则可能需要考虑其是否已进入冷态。 注意区间分布:快乐8的备选号码分布在不同的区间内。在选号时,可以关注不同区间内斜连号的出现情况,https://www.vipc.cn/article/67514b455889670027452466
4.一年级数学知识点第一种方法:个位上的数不够减9或8,从十位退一在个位加十再减。 第二种方法:将十几分解10和几,用10减9或8,再用结果加上分得的另一个数。 第三种方法:逆向思维,做减法想加法, 9(8)加几等于十几,十几减9(8)就等于几。 第四种方法:十几减9可以想成用个位数加1。(十几减9就用几加1) https://m.oh100.com/shuxue/3562097.html
5.苹果官网网址地址登录6、《和平精英》的上线,宣告了《刺激战场》的死亡,大量小伙伴都在关注如何转战国际服,但目前大多数苹果设备的小伙伴都不知道如何下载《刺激战场国际服》,下面整理了一套详细的方法,请仔细查看哦。 content="width=device-width, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0, user-scalable=no" />http://m.nodejs.wang/156747.html
6.安卓地址入口app平台神马三国一共可以招到哪些武将啊 content="width=device-width, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0, user-scalable=no" /> 美记:几支竞争队伍将迪文列为可能交易候选 但森林狼无意送走他-直播吧 首页 软件 游戏 应用集 详细信息 http://m.rimanquan.fun/887720.html
7.今日热榜官网8 F,b【69.8/40盒】认养一头牛全脂纯奶 原价¥79.8 券后¥69.8 热销5249件(近2小时) 9 Q44 近30册任选!老师推荐正版快乐读书吧 原价¥8.1 券后¥5.1 热销966件(近2小时) 45 【整箱让你公众号流量提升10倍的一套公式! 运营生 24谷子经济与社交媒体,正在助力品牌告别内卷 庄帅 https://tophub.today/