小学数学典型的30道应用题:定义+数量关系+例题详解

【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数

【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1.买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?

解:买1支铅笔多少钱?

0.6÷5=0.12(元)

买16支铅笔需要多少钱?

0.12×16=1.92(元)

列成综合算式

0.6÷5×16=0.12×16=1.92(元)

答:需要1.92元。

例2.3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?

解:1台拖拉机1天耕地多少公顷?

90÷3÷3=10(公顷)

5台拖拉机6天耕地多少公顷?

10×5×6=300(公顷)

90÷3÷3×5×6=10×30=300(公顷)

答:5台拖拉机6天耕地300公顷。

例3.5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

解:1辆汽车1次能运多少吨钢材?

100÷5÷4=5(吨)

7辆汽车1次能运多少吨钢材?

5×7=35(吨)

105吨钢材7辆汽车需要运几次?

105÷35=3(次)

105÷(100÷5÷4×7)=3(次)

答:需要运3次。

归总问题

【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量;总量÷1份数量=份数;总量÷另一份数=另一每份数量

【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1.服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

解:这批布总共有多少米?

3.2×791=2531.2(米)

现在可以做多少套?

2531.2÷2.8=904(套)

3.2×791÷2.8=904(套)

答:现在可以做904套。

例2.小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?

解:《红岩》这本书总共多少页?

24×12=288(页)

小明几天可以读完《红岩》?

288÷36=8(天)

24×12÷36=8(天)

答:小明8天可以读完《红岩》。

例3.食堂运来一批蔬菜,原计划每天吃50kg,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10kg,这批蔬菜可以吃多少天?

解:这批蔬菜共有多少千克?

50×30=1500(千克)

这批蔬菜可以吃几天?

1500÷(50+10)=25(天)

50×30÷(50+10)=25(天)

答:这批蔬菜可以吃25天。

和差问题

【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2;小数=(和-差)÷2

【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1.甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

解:甲班人数:

(98+6)÷2=52(人)

乙班人数:

(98-6)÷2=46(人)

答:甲班有52人,乙班有46人。

例2.长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

解:长=(18+2)÷2=10(厘米)

宽=(18-2)÷2=8(厘米)

长方形的面积

10×8=80(平方厘米)

答:长方形的面积为80平方厘米。

例3.有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知:

甲袋化肥重量:

(22+2)÷2=12(千克)

丙袋化肥重量:

(22-2)÷2=10(千克)

乙袋化肥重量:

32-12=20(千克)

答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

例4.甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

解:从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此:

甲车筐数:

(97+14×2+3)÷2=64(筐)

乙车筐数:

97-64=33(筐)

答:甲车原来装苹果64筐,乙车原来装苹果33筐。

和倍问题

【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数;总和-较小的数=较大的数;较小的数×几倍=较大的数

【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1.果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

解:杏树有多少棵?

248÷(3+1)=62(棵)

桃树有多少棵?

62×3=186(棵)

答:杏树有62棵,桃树有186棵。

例2.东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

解:西库存粮数:

480÷(1.4+1)=200(吨)

东库存粮数:

480-200=280(吨)

答:东库存粮280吨,西库存粮200吨。

例3.甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

解:每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。

把几天后甲站车辆数当作1倍量,则乙站车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么

几天后甲站车辆数减为:

(52+32)÷(2+1)=28(辆)

所求天数为:

(52-28)÷(28-24)=6(天)

答:6天以后乙站车辆数是甲站的2倍。

例4.甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

解:乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

因为乙比甲的2倍少4,所以乙数加上4就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

这时(170+4-6)就相当于(1+2+3)倍。那么,

甲数=(170+4-6)÷(1+2+3)=28

乙数=28×2-4=52

丙数=28×3+6=90

答:甲数是28,乙数是52,丙数是90。

差倍问题

【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两个数的差÷(几倍-1)=较小的数;较小的数×几倍=较大的数

例1.果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?

124÷(3-1)=62(棵)

答:果园里杏树是62棵,桃树是186棵。

例2.爸爸比儿子大27岁,今年爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

解:儿子年龄:

27÷(4-1)=9(岁)

爸爸年龄:

9×4=36(岁)

答:父子二人今年的年龄分别是36岁和9岁。

例3.商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?

解:如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,

上月盈利:

(30-12)÷(2-1)=18(万元)

本月盈利:

18+30=48(万元)

答:上月盈利是18万元,本月盈利是48万元。

例4.粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?

解:由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。

把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么(138-94)就相当于(3-1)倍,因此,

剩下的小麦数量:

(138-94)÷(3-1)=22(吨)

运出的小麦数量:

94-22=72(吨)

运粮的天数:

72÷9=8(天)

答:8天以后剩下的玉米是小麦的3倍。

倍比问题

【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷1个数量=倍数;另1个数量×倍数=另1总量

【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1.100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

解:3700kg是100kg的多少倍?

3700÷100=37(倍)

可以榨油多少千克?

40×37=1480(千克)

40×(3700÷100)=1480(千克)

答:可以榨油1480千克。

例2.今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

解:48000名是300名的几倍?

48000÷300=160(倍)

共植树多少棵?

400×160=64000(棵)

400×(48000÷300)=64000(棵)

答:全县48000名师生共植树64000棵。

例3.凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?

解:800亩是4亩的几倍?

800÷4=200(倍)

800亩收入多少元?

11111×200=2222200(元)

16000亩是800亩的几倍?

16000÷800=20(倍)

16000亩收入?

2222200×20=44444000(元)

答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

相遇问题

【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。

【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1.南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

解:392÷(28+21)=8(小时)

答:经过8小时两船相遇。

解:“第二次相遇”可以理解为二人跑了两圈。因此,总路程为400×2

(400×2)÷(5+3)=100(秒)

例3.甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解:“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,

(3×2)÷(15-13)=3(小时)

两地距离:

(15+13)×3=84(千米)

答:两地距离是84千米。

追及问题

【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动。

例1.好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

解:劣马先走12天能走多少千米?

75×12=900(千米)

好马几天追上劣马?

900÷(120-75)=20(天)

75×12÷(120-75)=900÷45=20(天)

答:好马20天能追上劣马。

例2.小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米;

小亮的速度是

(500-200)÷[40×(500÷200)]=3(米)

答:小亮的速度是每秒3米。

例3.我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

[10×(22-16)]千米,

甲乙两地相距60千米。则

[10×(22-16)+60]÷(30-10)=6(小时)

答:解放军在6小时后可以追上敌人。

例4.一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

16×2÷(48-40)=4(小时)

所以两站间的距离为:

(48+40)×4=352(千米)

列成综合算式:

(48+40)×[16×2÷(48-40)]=352(千米)

答:甲乙两站的距离是352千米。

例5.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?

180×2÷(90-60)=12(分钟)

家离学校的距离为:

90×12-180=900(米)

答:家离学校有900米远。

例6.孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。

解:手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟;

后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知

行1千米,跑步比步行少用:

[9-(10-5)]分。

1÷[9-(10-5)]=0.25(小时)=15(分钟)

15-[9-(10-5)]=11(分)

跑步速度为每小时:

1÷11/60=5.5(千米)

答:孙亮跑步速度为每小时5.5千米。

植树问题

【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

【数量关系】线形植树棵数=距离÷棵距+1;环形植树棵数=距离÷棵距;方形植树棵数=距离÷棵距-4;三角形植树棵数=距离÷棵距-3;面积植树棵数=面积÷(棵距×行距)

【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。

例1.一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?

解:136÷2+1=68+1=69(棵)

答:一共要栽69棵垂柳。

例2.一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?

解:400÷4=100(棵)

答:一共能栽100棵白杨树。

例3.一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?

解:220×4÷8-4=110-4=106(个)

答:一共可以安装106个照明灯。

例4.给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?

解:96÷(0.6×0.4)=96÷0.24=400(块)

答:至少需要400块地板砖。

例5.一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?

解:桥的一边有多少个电杆?

500÷50+1=11(个)

桥的两边有多少个电杆?

11×2=22(个)

大桥两边可安装多少盏路灯?

22×2=44(盏)

答:大桥两边一共可以安装44盏路灯。

年龄问题

【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。两个数的差÷(几倍-1)=较小的数

例1.爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?

解:35÷5=7(倍);

(35+1)÷(5+1)=6(倍)

答:今年爸爸的年龄是亮亮的7倍,明年是亮亮的6倍。

例2.母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

解:母亲比女儿的年龄大多少岁?

37-7=30(岁)

几年后母亲的年龄是女儿的4倍?

30÷(4-1)-7=3(年)

(37-7)÷(4-1)-7=3(年)

答:3年后母亲的年龄是女儿的4倍。

例3.3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?

THE END
1.七星彩中2+1多少钱七星彩体彩唯彩看球 数字彩 七星彩中2+1多少钱 专家 走势图 工具 推荐 七星彩24137期 3 9 1 9 2 8 0 七星彩中2+1多少钱七星彩中2+1多少钱,今天小编给大家介绍一下体育彩票七星彩的更多玩法及专家资讯推荐方案,如果你也对此感兴趣的可以跟着小编一起来了解个所以然。七星https://vipc.cn/tags/qixingcaizhong2+1duoshaoqian
2.尼康控优点防控镜片多少钱?10系列2300+,?20系列4700+30版本尼康控优点防控镜片价格表收费标准是:尼康控优点防控镜片1 0系列2300元起步价,尼康控优点防控镜片2 0系列4700元起步价,尼康控优点防控镜片3 0版本4000元起步价,不用系列的价格也不一样,但实际价格以各地眼科医院的具体收费为准! 在当今的视力矫正与近视防控市场中,尼康控优点防控镜片凭借其优异的技术和品质,成为了https://m.suntgj.com/showinfo-5-54576-0.html
3.全国组合式恒温恒湿空调机组AHU全国组合式恒温恒湿空调机组AHU-011.名称:组合式恒温恒湿空调机组AHU-01 2.型号:送风量7000cmH,新风量1000cmH,制冷量34KW,电加热34KW,加湿量10kg/h.机组由混合段+风机段+均流段+初中效过滤段+表冷段+电加热段+加湿段+出风段构成.价格多少钱? https://xunjia.zjtcn.com/askInfo/3366129.html
4.揭露年金险3大坑,90%的人都会中招!(附年金险避坑+科普+挑选+测评1、辨别年金好坏,要学会看 2 种总利益 (1)生存总收益——活着能领多少钱 我们买年金险,就是为了老了能多领点钱,所以在选择产品时,肯定是要首选领钱多的。 不过,生存总利益又包含两个方面:领取的年金部分+保单现金价值部分。 所以,我们在计算生存总利益的时候,往往要把这两部分的收益加起来。 https://www.shenlanbao.com/caifu/1663112753725652992
5.全新沈阳牙科医院收费价目表:种植牙价格1380+镶牙价格500+补牙导语整挺好呀,在这份近期的沈阳牙科医院收费价目表中必含沈阳种植牙,镶牙价格是多少钱一颗,而且沈阳牙齿矫正,根管治疗、补牙价格也少不了,总之,?这份沈阳口腔医院价格表就是齐全!如果你想了解沈阳欢乐、米兰、盛大、国睿、德立联合口腔医院价格表也可参考这份新版沈阳口腔医院收费标准。 https://www.236z.com/information/detail-id-25032
6.西安跟团旅游一般需要多少钱(详细线路+费用清单)西安跟团旅游一般需要多少钱(超全省钱分享)西安跟3五日游价格800元 西安主要景点: 1.【西安市区】:大雁塔,音乐喷泉,大唐芙蓉园,陕西历史博物馆,钟楼和鼓楼,明城墙 2.【网红打卡】:大唐不夜城,回民街,长恨歌,永兴坊 3.【精华景区】:华山,壶口瀑布,兵马俑,华清宫,法门寺,黄帝陵 https://m.cncn.com/lxs/88812/news-776569
7.北京市2022年水价标准:居民用水+非居民用水费用多少钱一吨?北京市水价一般是分为居民用水和非居民用水,其中居民用水按照阶梯式收费标准,不同用水量的水价是不一样的,那么北京市2022年水价标准多少钱一吨?接下来,跟着农交网小编一起来了解吧! 一、北京市2022年居民水价标准 2014年4月28日,北京市发展和改革委员会发布了《关于北京市居民用水实行阶梯水价的通知》(京发改〔https://m.nongjiao.com/news/read-25791.html
8.成都种植牙多少钱一颗2023价格表,集采后价格2980/2999/3980/8000+成都种植牙多少钱一颗2023年价格表大家已经知道了,下文easy●jf.com小编还要说一下2023成都半口/全口种植牙价格一般要花费多少钱 。 二、成都2023种牙价目表,分享2023成都半口/全口种植牙价格 1、2023成都半口半固定种植牙价格:2万元起 2、2023成都allon4即刻半口种植牙价格:7万元起 https://www.easyjf.com/subject/1001.html
9.2024淘宝88VIP会员开卡及省钱攻略(权益+快速提升淘气值方法+(2)天猫国际进口超市全年95折 天猫版海淘,价格比官旗便宜很多!而且经常做活动,有满减优惠啥的,也能低价入手~加上95折优惠,一单基本能省10-20左右! (3)天猫奢品全年95折 天猫线上奥特莱斯,各个大牌服装、包包、鞋子折扣集合店。很多1折左右出售的,原价2000+的衣服,200多就能入手。想薅大牌羊毛的,可以来这捡漏https://www.extrabux.cn/chs/guide/6382460
10.2024医院牙科收费价目表(种植牙2500+/牙齿矫正8000+/牙冠800+)半口8颗瓷贴面:2万元起 一口16颗瓷贴面:4万元起 所以,牙齿修复收费价目表2024中,烤瓷牙修复800元起,全瓷牙修复2000元起,半口活动义齿1000元起,全口活动义齿2000元起,树脂贴面修复800元起,瓷贴面修复2800元起。 四、拔牙补牙多少钱一颗牙2024 常规拔牙:100元起/颗 https://www.waasee.com/news/2383.html